Displaying 241 – 260 of 316

Showing per page

[unknown]

И.Э. Вербицкий, Н.Я. Крупник (1980)

Matematiceskie issledovanija

Weyl spectra and Weyl's theorem

Young Min Han, Woo Young Lee (2001)

Studia Mathematica

"Weyl's theorem" for an operator on a Hilbert space is the statement that the complement in the spectrum of the Weyl spectrum coincides with the isolated eigenvalues of finite multiplicity. In this paper we consider how Weyl's theorem survives for polynomials of operators and under quasinilpotent or compact perturbations. First, we show that if T is reduced by each of its finite-dimensional eigenspaces then the Weyl spectrum obeys the spectral mapping theorem, and further if T is reduction-isoloid...

Weyl type theorem for operator matrices

Xiaohong Cao (2008)

Studia Mathematica

Using topological uniform descent, we give necessary and sufficient conditions for Browder's theorem and Weyl's theorem to hold for an operator A. The two theorems are liable to fail for 2 × 2 operator matrices. In this paper, we explore how they survive for 2 × 2 operator matrices on a Hilbert space.

Weyl type theorems for p-hyponormal and M-hyponormal operators

Xiaohong Cao, Maozheng Guo, Bin Meng (2004)

Studia Mathematica

"Generalized Weyl's theorem holds" for an operator when the complement in the spectrum of the B-Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues; and "generalized a-Weyl's theorem holds" for an operator when the complement in the approximate point spectrum of the semi-B-essential approximate point spectrum coincides with the isolated points of the approximate point spectrum which are eigenvalues. If T or T* is p-hyponormal or M-hyponormal then for every f ∈...

Weyl's and Browder's theorems for operators satisfying the SVEP

Mourad Oudghiri (2004)

Studia Mathematica

We study Weyl's and Browder's theorem for an operator T on a Banach space such that T or its adjoint has the single-valued extension property. We establish the spectral mapping theorem for the Weyl spectrum, and we show that Browder's theorem holds for f(T) for every f ∈ 𝓗 (σ(T)). Also, we give necessary and sufficient conditions for such T to obey Weyl's theorem. Weyl's theorem in an important class of Banach space operators is also studied.

Weyl's theorem, a-Weyl's theorem and single-valued extension property.

Pietro Aiena, Carlos Carpintero (2005)

Extracta Mathematicae

In this paper we investigate the relation of Weyl's theorem, of a-Weyl's theorem and the single valued extension property. In particular, we establish necessary and sufficient conditions for a Banch space operator T to satisfy Weyl's theorem or a-Weyl's theorem, in the case in which T, or its dual T*, has the single valued extension property. These results improve similar results obtained by Curto and Han, Djordjevic S. V., Duggal B. P., and Y. M. Han. The theory is exemplified in the case of multipliers...

Currently displaying 241 – 260 of 316