The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider simultaneous solutions of operator Sylvester equations (1 ≤ i ≤ k), where and are commuting k-tuples of bounded linear operators on Banach spaces and ℱ, respectively, and is a (compatible) k-tuple of bounded linear operators from ℱ to , and prove that if the joint Taylor spectra of and do not intersect, then this system of Sylvester equations has a unique simultaneous solution.
By means of the application of annihilating entire functions of an operator, the bilateral quadratic equation in operators A + BT +TC + TDT = 0, is changed into an unilateral linear equation, obtaining conditions under which the solutions of such linear equation satisfy the quadratic equation.
Currently displaying 1 –
2 of
2