The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Norm inequalities for the difference between weighted and integral means of operator differentiable functions

Silvestru Sever Dragomir (2020)

Archivum Mathematicum

Let f be a continuous function on I and A , B 𝒮𝒜 I H , the convex set of selfadjoint operators with spectra in I . If A B and f , as an operator function, is Gateaux differentiable on [ A , B ] : = ( 1 - t ) A + t B t 0 , 1 , while p : 0 , 1 is Lebesgue integrable, then we have the inequalities 0 1 p τ f 1 - τ A + τ B d τ - 0 1 p τ d τ 0 1 f 1 - τ A + τ B d τ 0 1 τ ( 1 - τ ) | τ 1 p s d s 1 - τ - 0 τ p s d s τ | f 1 - τ A + τ B B - A d τ 1 4 0 1 | τ 1 p s d s 1 - τ - 0 τ p s d s τ | f 1 - τ A + τ B B - A d τ , where f is the Gateaux derivative of f .

Currently displaying 1 – 1 of 1

Page 1