Displaying 81 – 100 of 140

Showing per page

On the class of order Dunford-Pettis operators

Khalid Bouras, Abdelmonaim El Kaddouri, Jawad H'michane, Mohammed Moussa (2013)

Mathematica Bohemica

We characterize Banach lattices E and F on which the adjoint of each operator from E into F which is order Dunford-Pettis and weak Dunford-Pettis, is Dunford-Pettis. More precisely, we show that if E and F are two Banach lattices then each order Dunford-Pettis and weak Dunford-Pettis operator T from E into F has an adjoint Dunford-Pettis operator T ' from F ' into E ' if, and only if, the norm of E ' is order continuous or F ' has the Schur property. As a consequence we show that, if E and F are two Banach...

On uniformly smoothing stochastic operators

Wojciech Bartoszek (1995)

Commentationes Mathematicae Universitatis Carolinae

We show that a stochastic operator acting on the Banach lattice L 1 ( m ) of all m -integrable functions on ( X , 𝒜 ) is quasi-compact if and only if it is uniformly smoothing (see the definition below).

On λ-commuting operators

John B. Conway, Gabriel Prǎjiturǎ (2005)

Studia Mathematica

For a scalar λ, two operators T and S are said to λ-commute if TS = λST. In this note we explore the pervasiveness of the operators that λ-commute with a compact operator by characterizing the closure and the interior of the set of operators with this property.

Operators whose adjoints are quasi p-nuclear

J. M. Delgado, C. Piñeiro, E. Serrano (2010)

Studia Mathematica

For p ≥ 1, a set K in a Banach space X is said to be relatively p-compact if there exists a p-summable sequence (xₙ) in X with K α x : ( α ) B p ' . We prove that an operator T: X → Y is p-compact (i.e., T maps bounded sets to relatively p-compact sets) iff T* is quasi p-nuclear. Further, we characterize p-summing operators as those operators whose adjoints map relatively compact sets to relatively p-compact sets.

Order-bounded operators from vector-valued function spaces to Banach spaces

Marian Nowak (2005)

Banach Center Publications

Let E be an ideal of L⁰ over a σ-finite measure space (Ω,Σ,μ). For a real Banach space ( X , | | · | | X ) let E(X) be a subspace of the space L⁰(X) of μ-equivalence classes of strongly Σ-measurable functions f: Ω → X and consisting of all those f ∈ L⁰(X) for which the scalar function | | f ( · ) | | X belongs to E. Let E(X)˜ stand for the order dual of E(X). For u ∈ E⁺ let D u ( = f E ( X ) : | | f ( · ) | | X u ) stand for the order interval in E(X). For a real Banach space ( Y , | | · | | Y ) a linear operator T: E(X) → Y is said to be order-bounded whenever for each u ∈ E⁺ the set...

Polynomially compact derivations on Banach algebras

Matej Brešar, Yuri V. Turovskii (2009)

Studia Mathematica

We consider a continuous derivation D on a Banach algebra 𝓐 such that p(D) is a compact operator for some polynomial p. It is shown that either 𝓐 has a nonzero finite-dimensional ideal not contained in the radical rad(𝓐) of 𝓐 or there exists another polynomial p̃ such that p̃(D) maps 𝓐 into rad(𝓐). A special case where Dⁿ is compact is discussed in greater detail.

Quantification of the reciprocal Dunford-Pettis property

Ondřej F. K. Kalenda, Jiří Spurný (2012)

Studia Mathematica

We prove in particular that Banach spaces of the form C₀(Ω), where Ω is a locally compact space, enjoy a quantitative version of the reciprocal Dunford-Pettis property.

Quasinilpotent operators in operator Lie algebras II

Peng Cao (2009)

Studia Mathematica

In this paper, it is proved that the Banach algebra ( ) ¯ , generated by a Lie algebra ℒ of operators, consists of quasinilpotent operators if ℒ consists of quasinilpotent operators and ( ) ¯ consists of polynomially compact operators. It is also proved that ( ) ¯ consists of quasinilpotent operators if ℒ is an essentially nilpotent Engel Lie algebra generated by quasinilpotent operators. Finally, Banach algebras generated by essentially nilpotent Lie algebras are shown to be compactly quasinilpotent.

Currently displaying 81 – 100 of 140