On generalized localizability
A recurrence relation for the computation of the -norms of an Hermitian Fredholm integral operator is derived and an expression giving approximately the number of eigenvalues which in absolute value are equal to the spectral radius is determined. Using the -norms for the approximation of the spectral radius of this operator an a priori and an a posteriori bound for the error are obtained. Some properties of the a posteriori bound are discussed.
An operator with infinite dimensional kernel is positive iff it is a positive scalar times a certain product of three projections.
We consider the unitary group U of complex, separable, infinite-dimensional Hilbert space as a discrete group. It is proved that, whenever U acts by isometries on a metric space, every orbit is bounded. Equivalently, U is not the union of a countable chain of proper subgroups, and whenever E ⊆ U generates U, it does so by words of a fixed finite length.
We deal with several classes of integral transformations of the form where is an operator. In case is the identity operator, we obtain several operator properties on with weights for a generalized operator related to the Fourier cosine and the Kontorovich-Lebedev integral transforms. For a class of differential operators of infinite order, we prove the unitary property of these transforms on and define the inversion formula. Further, for an other class of differential operators of finite...
Let A and B be two -non necessarily bounded- normal operators. We give new conditions making their product normal. We also generalize a result by Deutsch et al on normal products of matrices.