Displaying 61 – 80 of 125

Showing per page

Norm convergence of some power series of operators in L p with applications in ergodic theory

Christophe Cuny (2010)

Studia Mathematica

Let X be a closed subspace of L p ( μ ) , where μ is an arbitrary measure and 1 < p < ∞. Let U be an invertible operator on X such that s u p n | | U | | < . Motivated by applications in ergodic theory, we obtain (optimal) conditions for the convergence of series like n 1 ( U f ) / n 1 - α , 0 ≤ α < 1, in terms of | | f + + U n - 1 f | | p , generalizing results for unitary (or normal) operators in L²(μ). The proofs make use of the spectral integration initiated by Berkson and Gillespie and, more particularly, of results from a paper by Berkson-Bourgain-Gillespie....

n-supercyclic operators

Nathan S. Feldman (2002)

Studia Mathematica

We show that there are linear operators on Hilbert space that have n-dimensional subspaces with dense orbit, but no (n-1)-dimensional subspaces with dense orbit. This leads to a new class of operators, called the n-supercyclic operators. We show that many cohyponormal operators are n-supercyclic. Furthermore, we prove that for an n-supercyclic operator, there are n circles centered at the origin such that every component of the spectrum must intersect one of these circles.

On group decompositions of bounded cosine sequences

Wojciech Chojnacki (2007)

Studia Mathematica

A two-sided sequence ( c ) n with values in a complex unital Banach algebra is a cosine sequence if it satisfies c n + m + c n - m = 2 c c for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence ( c ) n is bounded if s u p n | | c | | < . A (bounded) group decomposition for a cosine sequence c = ( c ) n is a representation of c as c = ( b + b - n ) / 2 for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying s u p n | | b | | < , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, here referred...

On the characterization of scalar type spectral operators

P. A. Cojuhari, A. M. Gomilko (2008)

Studia Mathematica

The paper is concerned with conditions guaranteeing that a bounded operator in a reflexive Banach space is a scalar type spectral operator. The cases where the spectrum of the operator lies on the real axis and on the unit circle are studied separately.

On the weak decomposition property ( δ w )

El Hassan Zerouali, Hassane Zguitti (2005)

Studia Mathematica

We study a new class of bounded linear operators which strictly contains the class of bounded linear operators with the decomposition property (δ) or the weak spectral decomposition property (weak-SDP). We treat general local spectral properties for operators in this class and compare them with the case of operators with (δ).

On totally * -paranormal operators

Eungil Ko, Hae-Won Nam, Young Oh Yang (2006)

Czechoslovak Mathematical Journal

In this paper we study some properties of a totally * -paranormal operator (defined below) on Hilbert space. In particular, we characterize a totally * -paranormal operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for totally * -paranormal operators through the local spectral theory. Finally, we show that every totally * -paranormal operator satisfies an analogue of the single valued extension property for W 2 ( D , H ) and some of totally * -paranormal operators have scalar extensions....

Currently displaying 61 – 80 of 125