Homomorphisms between -algebras and their stabilities.
We characterize a class of *-homomorphisms on Lip⁎(X,𝓑(𝓗 )), a non-commutative Banach *-algebra of Lipschitz functions on a compact metric space and with values in 𝓑(𝓗 ). We show that the zero map is the only multiplicative *-preserving linear functional on Lip⁎(X,𝓑(𝓗 )). We also establish the algebraic reflexivity property of a class of *-isomorphisms on Lip⁎(X,𝓑(𝓗 )).