Page 1

Displaying 1 – 1 of 1

Showing per page

Unital strongly harmonic commutative Banach algebras

Janko Bračič (2002)

Studia Mathematica

A unital commutative Banach algebra is spectrally separable if for any two distinct non-zero multiplicative linear functionals φ and ψ on it there exist a and b in such that ab = 0 and φ(a)ψ(b) ≠ 0. Spectrally separable algebras are a special subclass of strongly harmonic algebras. We prove that a unital commutative Banach algebra is spectrally separable if there are enough elements in such that the corresponding multiplication operators on have the decomposition property (δ). On the other hand,...

Currently displaying 1 – 1 of 1

Page 1