The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Noninvertibility preservers on Banach algebras

Bojan Kuzma (2006)

Czechoslovak Mathematical Journal

It is proved that a linear surjection Φ 𝒜 , which preserves noninvertibility between semisimple, unital, complex Banach algebras, is automatically injective.

Norm conditions for real-algebra isomorphisms between uniform algebras

Rumi Shindo (2010)

Open Mathematics

Let A and B be uniform algebras. Suppose that α ≠ 0 and A 1 ⊂ A. Let ρ, τ: A 1 → A and S, T: A 1 → B be mappings. Suppose that ρ(A 1), τ(A 1) and S(A 1), T(A 1) are closed under multiplications and contain expA and expB, respectively. If ‖S(f)T(g) − α‖∞ = ‖ρ(f)τ(g) − α‖∞ for all f, g ∈ A 1, S(e 1)−1 ∈ S(A 1) and S(e 1) ∈ T(A 1) for some e 1 ∈ A 1 with ρ(e 1) = 1, then there exists a real-algebra isomorphism S ˜ : A → B such that S ˜ (ρ(f)) = S(e 1)−1 S(f) for every f ∈ A 1. We also give some applications...

Currently displaying 1 – 2 of 2

Page 1