Jordan homomorphisms in proper JCQ-triples.
Let ₁, ₂ be (not necessarily unital or closed) standard operator algebras on locally convex spaces X₁, X₂, respectively. For k ≥ 2, consider different products on elements in , which covers the usual product and the Jordan triple product T₁ ∗ T₂ = T₂T₁T₂. Let Φ: ₁ → ₂ be a (not necessarily linear) map satisfying whenever any one of ’s has rank at most one. It is shown that if the range of Φ contains all rank one and rank two operators then Φ must be a Jordan isomorphism multiplied by a root...