Page 1

Displaying 1 – 3 of 3

Showing per page

On extremal positive maps acting between type I factors

Marcin Marciniak (2010)

Banach Center Publications

The paper is devoted to the problem of classification of extremal positive linear maps acting between 𝔅(𝒦) and 𝔅(ℋ) where 𝒦 and ℋ are Hilbert spaces. It is shown that every positive map with the property that rank ϕ(P) ≤ 1 for any one-dimensional projection P is a rank 1 preserver. This allows us to characterize all decomposable extremal maps as those which satisfy the above condition. Further, we prove that every extremal positive map which is 2-positive turns out to be automatically completely...

On isomorphisms of standard operator algebras

Lajos Molnár (2000)

Studia Mathematica

We show that between standard operator algebras every bijective map with a certain multiplicativity property related to Jordan triple isomorphisms of associative rings is automatically additive.

On local automorphisms and mappings that preserve idempotents

Matej Brešar, Peter Šemrl (1995)

Studia Mathematica

Let B(H) be the algebra of all bounded linear operators on a Hilbert space H. Automorphisms and antiautomorphisms are the only bijective linear mappings θ of B(H) with the property that θ(P) is an idempotent whenever P ∈ B(H) is. In case H is separable and infinite-dimensional, every local automorphism of B(H) is an automorphism.

Currently displaying 1 – 3 of 3

Page 1