Page 1

Displaying 1 – 6 of 6

Showing per page

Linear mappings preserving similarity on B(H)

Tatjana Petek (2004)

Studia Mathematica

Let H be an infinite-dimensional complex Hilbert space. We give a characterization of surjective linear mappings on B(H) that preserve similarity in both directions.

Linear maps on Mₙ(ℂ) preserving the local spectral radius

Abdellatif Bourhim, Vivien G. Miller (2008)

Studia Mathematica

Let x₀ be a nonzero vector in ℂⁿ. We show that a linear map Φ: Mₙ(ℂ) → Mₙ(ℂ) preserves the local spectral radius at x₀ if and only if there is α ∈ ℂ of modulus one and an invertible matrix A ∈ Mₙ(ℂ) such that Ax₀ = x₀ and Φ ( T ) = α A T A - 1 for all T ∈ Mₙ(ℂ).

Linear maps preserving quasi-commutativity

Heydar Radjavi, Peter Šemrl (2008)

Studia Mathematica

Let X and Y be Banach spaces and ℬ(X) and ℬ(Y) the algebras of all bounded linear operators on X and Y, respectively. We say that A,B ∈ ℬ(X) quasi-commute if there exists a nonzero scalar ω such that AB = ωBA. We characterize bijective linear maps ϕ : ℬ(X) → ℬ(Y) preserving quasi-commutativity. In fact, such a characterization can be proved for much more general algebras. In the finite-dimensional case the same result can be obtained without the bijectivity assumption.

Local spectrum and local spectral radius of an operator at a fixed vector

Janko Bračič, Vladimír Müller (2009)

Studia Mathematica

Let be a complex Banach space and e ∈ a nonzero vector. Then the set of all operators T ∈ ℒ() with σ T ( e ) = σ δ ( T ) , respectively r T ( e ) = r ( T ) , is residual. This is an analogy to the well known result for a fixed operator and variable vector. The results are then used to characterize linear mappings preserving the local spectrum (or local spectral radius) at a fixed vector e.

Locally spectrally bounded linear maps

M. Bendaoud, M. Sarih (2011)

Mathematica Bohemica

Let ( ) be the algebra of all bounded linear operators on a complex Hilbert space . We characterize locally spectrally bounded linear maps from ( ) onto itself. As a consequence, we describe linear maps from ( ) onto itself that compress the local spectrum.

Currently displaying 1 – 6 of 6

Page 1