Page 1

Displaying 1 – 3 of 3

Showing per page

Denseness of norm attaining mappings.

María D. Acosta (2006)

RACSAM

The Bishop-Phelps Theorem states that the set of (bounded and linear) functionals on a Banach space that attain their norms is dense in the dual. In the complex case, Lomonosov proved that there may be a closed, convex and bounded subset C of a Banach space such that the set of functionals whose maximum modulus is attained on C is not dense in the dual. This paper contains a survey of versions for operators, multilinear forms and polynomials of the Bishop-Phelps Theorem. Lindenstrauss provided examples...

Currently displaying 1 – 3 of 3

Page 1