An approximative solution of the generalized eigenvalue problem
Tomáš Kojecký (1990)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Marek Wójtowicz (1998)
Commentationes Mathematicae Universitatis Carolinae
This paper presents an elementary proof and a generalization of a theorem due to Abramovich and Lipecki, concerning the nonexistence of closed linear sublattices of finite codimension in nonatomic locally solid linear lattices with the Lebesgue property.
A.W. Wickstead (1991)
Mathematische Zeitschrift
Tadeusz Iwaniec (2011)
Banach Center Publications
Zeng, Hong-Gang, Zhou, Ze-Hua (2010)
Journal of Inequalities and Applications [electronic only]
Stanisław Kwapień, Stanisław Szarek (1979)
Studia Mathematica
Andreas Boukas (1991)
Monatshefte für Mathematik
Z. Gan (2010)
Mathematical Modelling of Natural Phenomena
We classify the hulls of different limit-periodic potentials and show that the hull of a limit-periodic potential is a procyclic group. We describe how limit-periodic potentials can be generated from a procyclic group and answer arising questions. As an expository paper, we discuss the connection between limit-periodic potentials and profinite groups as completely as possible and review some recent results on Schrödinger operators obtained in this...
L. Drenowski (1976)
Studia Mathematica
M. Radjabalipour (1987)
Mathematische Zeitschrift
David Ruelle (1990)
Publications Mathématiques de l'IHÉS
J. Peetre, S. Janson, J. Arazy, S.D. Fisher (1990)
Journal für die reine und angewandte Mathematik
Vincenzo de Filippis, Giovanni Scudo, Mohammad S. Tammam El-Sayiad (2012)
Czechoslovak Mathematical Journal
Let be a prime ring of characteristic different from , the Utumi quotient ring of , the extended centroid of , a non-central Lie ideal of , a non-zero generalized derivation of . Suppose that for all , then one of the following holds: (1) there exists such that for all ; (2) satisfies the standard identity and there exist and such that for all . We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of...
David G. Schaeffer (1973)
Publications Mathématiques de l'IHÉS
Sameer Chavan (2013)
Colloquium Mathematicae
Let T be a spherical 2-expansive m-tuple and let denote its spherical Cauchy dual. If is commuting then the inequality holds for every positive integer k. In case m = 1, this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are hyponormal.
B. Bollobas, E. Galanis (1976)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
R. Kerman (1983)
Studia Mathematica
Nassif Ghoussoub (1982)
Séminaire de probabilités de Strasbourg
Peter Meyer-Nieberg (1986)
Mathematische Zeitschrift
Eberhard Malkowsky, Vladimir Rakocević (2000)
Zbornik Radova