Displaying 261 – 280 of 3251

Showing per page

An elementary proof of a theorem on sublattices of finite codimension

Marek Wójtowicz (1998)

Commentationes Mathematicae Universitatis Carolinae

This paper presents an elementary proof and a generalization of a theorem due to Abramovich and Lipecki, concerning the nonexistence of closed linear sublattices of finite codimension in nonatomic locally solid linear lattices with the Lebesgue property.

An Exposition of the Connection between Limit-Periodic Potentials and Profinite Groups

Z. Gan (2010)

Mathematical Modelling of Natural Phenomena

We classify the hulls of different limit-periodic potentials and show that the hull of a limit-periodic potential is a procyclic group. We describe how limit-periodic potentials can be generated from a procyclic group and answer arising questions. As an expository paper, we discuss the connection between limit-periodic potentials and profinite groups as completely as possible and review some recent results on Schrödinger operators obtained in this...

An identity with generalized derivations on Lie ideals, right ideals and Banach algebras

Vincenzo de Filippis, Giovanni Scudo, Mohammad S. Tammam El-Sayiad (2012)

Czechoslovak Mathematical Journal

Let R be a prime ring of characteristic different from 2 , U the Utumi quotient ring of R , C = Z ( U ) the extended centroid of R , L a non-central Lie ideal of R , F a non-zero generalized derivation of R . Suppose that [ F ( u ) , u ] F ( u ) = 0 for all u L , then one of the following holds: (1) there exists α C such that F ( x ) = α x for all x R ; (2) R satisfies the standard identity s 4 and there exist a U and α C such that F ( x ) = a x + x a + α x for all x R . We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of...

An inequality for spherical Cauchy dual tuples

Sameer Chavan (2013)

Colloquium Mathematicae

Let T be a spherical 2-expansive m-tuple and let T denote its spherical Cauchy dual. If T is commuting then the inequality | β | = k ( β ! ) - 1 ( T ) β ( T ) * β ( k + m - 1 k ) | β | = k ( β ! ) - 1 ( T ) * β ( T ) β holds for every positive integer k. In case m = 1, this reveals the rather curious fact that all positive integral powers of the Cauchy dual of a 2-expansive (or concave) operator are hyponormal.

Currently displaying 261 – 280 of 3251