The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 301 – 320 of 372

Showing per page

Application of ( L ) sets to some classes of operators

Kamal El Fahri, Nabil Machrafi, Jawad H'michane, Aziz Elbour (2016)

Mathematica Bohemica

The paper contains some applications of the notion of Ł sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order ( L ) -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an ( L ) sets. As a sequence characterization of such operators, we see that an operator T : X E from a Banach space into a Banach lattice is order Ł -Dunford-Pettis, if and only if | T ( x n ) | 0 for σ ( E , E ' ) for every weakly null...

Application of sequential shifts to an interpolation problem.

Zbigniew Binderman (1993)

Collectanea Mathematica

In the present paper initial operators for a right invertible operator, which are induced by sequential shifts and have the property c(R) are constructed. An application to the Lagrange type interpolation problem is given. Moreover, an example with the Pommiez operator is studied.

Applications sommantes et radonifiantes

Patrice Assouad (1972)

Annales de l'institut Fourier

Soient E , F des espaces de Banach L ϕ , L ψ des espaces d’Orlicz, on définit les applications ϕ - ψ sommantes de E dans F . On montre que de telles applications sont ϕ - ψ radonifiantes de E dans σ ( F ' ' , F ' ) .On donne une factorisation caractéristique des applications ϕ - 0 sommantes.

Approximation and asymptotics of eigenvalues of unbounded self-adjoint Jacobi matrices acting in l 2 by the use of finite submatrices

Maria Malejki (2010)

Open Mathematics

We consider the problem of approximation of eigenvalues of a self-adjoint operator J defined by a Jacobi matrix in the Hilbert space l 2(ℕ) by eigenvalues of principal finite submatrices of an infinite Jacobi matrix that defines this operator. We assume the operator J is bounded from below with compact resolvent. In our research we estimate the asymptotics (with n → ∞) of the joint error of approximation for the eigenvalues, numbered from 1 to N; of J by the eigenvalues of the finite submatrix J...

Approximation and entropy numbers of compact Sobolev embeddings

Leszek Skrzypczak (2006)

Banach Center Publications

The aim of the paper is twofold. First we give a survey of some recent results concerning the asymptotic behavior of the entropy and approximation numbers of compact Sobolev embeddings. Second we prove new estimates of approximation numbers of embeddings of weighted Besov spaces in the so called limiting case.

Currently displaying 301 – 320 of 372