Bicontractive projections in sequence spaces and a few related kinds of maps
Let X, Y be complete metric spaces and E, F be Banach spaces. A bijective linear operator from a space of E-valued functions on X to a space of F-valued functions on Y is said to be biseparating if f and g are disjoint if and only if Tf and Tg are disjoint. We introduce the class of generalized Lipschitz spaces, which includes as special cases the classes of Lipschitz, little Lipschitz and uniformly continuous functions. Linear biseparating maps between generalized Lipschitz spaces are characterized...
Let φ be a holomorphic mapping between complex unit balls. We characterize those regular φ for which the composition operators C φ: f ↦ f ○ φ map the Bloch space into the Hardy space.
In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...
In this paper, we consider the boundary stabilization of a sandwich beam which consists of two outer stiff layers and a compliant middle layer. Using Riesz basis approach, we show that there is a sequence of generalized eigenfunctions, which forms a Riesz basis in the state space. As a consequence, the spectrum-determined growth condition as well as the exponential stability of the closed-loop system are concluded. Finally, the well-posedness and regularity in the sense of Salamon-Weiss class as...
We study boundary value problems of the type Ax = r, φ(x) = φ(b) (φ ∈ M ⊆ E*) in ordered Banach spaces.
Associated with some properties of weighted composition operators on the spaces of bounded harmonic and analytic functions on the open unit disk , we obtain conditions in terms of behavior of weight functions and analytic self-maps on the interior and on the boundary respectively. We give direct proofs of the equivalence of these interior and boundary conditions. Furthermore we give another proof of the estimate for the essential norm of the difference of weighted composition operators.
Let v be a standard weight on the upper half-plane , i.e. v: → ]0,∞[ is continuous and satisfies v(w) = v(i Im w), w ∈ , v(it) ≥ v(is) if t ≥ s > 0 and . Put v₁(w) = Im wv(w), w ∈ . We characterize boundedness and surjectivity of the differentiation operator D: Hv() → Hv₁(). For example we show that D is bounded if and only if v is at most of moderate growth. We also study composition operators on Hv().
We prove a sufficient condition for products of Toeplitz operators , where f,g are square integrable holomorphic functions in the unit ball in ℂⁿ, to be bounded on the weighted Bergman space. This condition slightly improves the result obtained by K. Stroethoff and D. Zheng. The analogous condition for boundedness of products of Hankel operators is also given.