Factorization of Toeplitz and Hankel operators
Using a factorization lemma we obtain improvements and simplifications of results on representation of generalized Toeplitz and Hankel operators as compression of symbols.
Using a factorization lemma we obtain improvements and simplifications of results on representation of generalized Toeplitz and Hankel operators as compression of symbols.
The main result is that the existence of an unbounded continuous linear operator T between Köthe spaces λ(A) and λ(C) which factors through a third Köthe space λ(B) causes the existence of an unbounded continuous quasidiagonal operator from λ(A) into λ(C) factoring through λ(B) as a product of two continuous quasidiagonal operators. This fact is a factorized analogue of the Dragilev theorem [3, 6, 7, 2] about the quasidiagonal characterization of the relation (λ(A),λ(B)) ∈ ℬ (which means that all...
Let X be a Banach space and ν a countably additive X-valued measure defined on a σ-algebra. We discuss some generation properties of the Banach space L¹(ν) and its connection with uniform Eberlein compacta. In this way, we provide a new proof that L¹(ν) is weakly compactly generated and embeds isomorphically into a Hilbert generated Banach space. The Davis-Figiel-Johnson-Pełczyński factorization of the integration operator is also analyzed. As a result, we prove that if is both completely continuous...
We study some classes of summing operators between spaces of integrable functions with respect to a vector measure in order to prove a factorization theorem for -summing operators between Banach spaces.
In recent papers, the Right and the Strong* topologies have been introduced and studied on general Banach spaces. We characterize different types of continuity for multilinear operators (joint, uniform, etc.) with respect to the above topologies. We also study the relations between them. Finally, in the last section, we relate the joint Strong*-to-norm continuity of a multilinear operator T defined on C*-algebras (respectively, JB*-triples) to C*-summability (respectively, JB*-triple-summability)....
Ortega-Cerdà-Seip demonstrated that there are bounded multiplicative Hankel forms which do not arise from bounded symbols. On the other hand, when such a form is in the Hilbert-Schmidt class ₂, Helson showed that it has a bounded symbol. The present work investigates forms belonging to the Schatten classes between these two cases. It is shown that for every there exist multiplicative Hankel forms in the Schatten class which lack bounded symbols. The lower bound on p is in a certain sense optimal...
A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jakić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.
We study some algebraic properties of commutators of Toeplitz operators on the Hardy space of the bidisk. First, for two symbols where one is arbitrary and the other is (co-)analytic with respect to one fixed variable, we show that there is no nontrivial finite rank commutator. Also, for two symbols with separated variables, we prove that there is no nontrivial finite rank commutator or compact commutator in certain cases.
We describe the C*-algebra associated with the finite sections discretization of truncated Toeplitz operators on the model space K2u where u is an infinite Blaschke product. As consequences, we get a stability criterion for the finite sections discretization and results on spectral and pseudospectral approximation.