Displaying 41 – 60 of 73

Showing per page

Norm estimates of discrete Schrödinger operators

Ryszard Szwarc (1998)

Colloquium Mathematicae

Harper’s operator is defined on 2 ( Z ) by H θ ξ ( n ) = ξ ( n + 1 ) + ξ ( n - 1 ) + 2 cos n θ ξ ( n ) , where θ [ 0 , π ] . We show that the norm of H θ is less than or equal to 2 2 for π / 2 θ π . This solves a conjecture stated in [1]. A general formula for estimating the norm of self-adjoint tridiagonal infinite matrices is also derived.

Normal Hilbert modules over the ball algebra A(B)

Kunyu Guo (1999)

Studia Mathematica

The normal cohomology functor E x t is introduced from the category of all normal Hilbert modules over the ball algebra to the category of A(B)-modules. From the calculation of E x t -groups, we show that every normal C(∂B)-extension of a normal Hilbert module (viewed as a Hilbert module over A(B) is normal projective and normal injective. It follows that there is a natural isomorphism between Hom of normal Shilov modules and that of their quotient modules, which is a new lifting theorem of normal Shilov...

Notes on commutator on the variable exponent Lebesgue spaces

Dinghuai Wang (2019)

Czechoslovak Mathematical Journal

We obtain the factorization theorem for Hardy space via the variable exponent Lebesgue spaces. As an application, it is proved that if the commutator of Coifman, Rochberg and Weiss [ b , T ] is bounded on the variable exponent Lebesgue spaces, then b is a bounded mean oscillation (BMO) function.

Notes on q-deformed operators

Schôichi Ôta, Franciszek Hugon Szafraniec (2004)

Studia Mathematica

The paper concerns operators of deformed structure like q-normal and q-hyponormal operators with the deformation parameter q being a positive number different from 1. In particular, an example of a q-hyponormal operator with empty spectrum is given, and q-hyponormality is characterized in terms of some operator inequalities.

Notes on some spectral radius and numerical radius inequalities

Amer Abu-Omar, Fuad Kittaneh (2015)

Studia Mathematica

We prove numerical radius inequalities for products, commutators, anticommutators, and sums of Hilbert space operators. A spectral radius inequality for sums of commuting operators is also given. Our results improve earlier well-known results.

Notes on unbounded Toeplitz operators in Segal-Bargmann spaces

D. Cichoń (1996)

Annales Polonici Mathematici

Relations between different extensions of Toeplitz operators T φ are studied. Additive properties of closed Toeplitz operators are investigated, in particular necessary and sufficient conditions are given and some applications in case of Toeplitz operators with polynomial symbols are indicated.

Currently displaying 41 – 60 of 73