Displaying 41 – 60 of 82

Showing per page

Remarks on rich subspaces of Banach spaces

Vladimir Kadets, Nigel Kalton, Dirk Werner (2003)

Studia Mathematica

We investigate rich subspaces of L₁ and deduce an interpolation property of Sidon sets. We also present examples of rich separable subspaces of nonseparable Banach spaces and we study the Daugavet property of tensor products.

Representation of operators by kernels.

Peter Stollmann (1991)

Collectanea Mathematica

We prove that differences of order-continuous operators acting between function spaces can be represented with a pseudo-kernel, proved the underlying measure spaces satisfy certain (rather weak) conditions. To see that part of these conditions are necessary, we show that the strict localizability of a measure space can be characterized by the existence of a pseudo-kernel for a certain operator.

Representing non-weakly compact operators

Manuel González, Eero Saksman, Hans-Olav Tylli (1995)

Studia Mathematica

For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of L 1 and C(0,1), but R(L(E)/W(E)) identifies isometrically with...

Currently displaying 41 – 60 of 82