Determinants of a class of Toeplitz matrices.
Given a finite set X⊆ ℝ we characterize the diagonals of self-adjoint operators with spectrum X. Our result extends the Schur-Horn theorem from a finite-dimensional setting to an infinite-dimensional Hilbert space analogous to Kadison's theorem for orthogonal projections (2002) and the second author's result for operators with three-point spectrum (2013).
Under some mild assumptions, non-linear diameter-preserving bijections between (vector-valued) function spaces are characterized with the help of a well-known theorem of Ulam and Mazur. A necessary and sufficient condition for the existence of a diameter-preserving bijection between function spaces in the complex scalar case is derived, and a complete description of such maps is given in several important cases.
A bounded linear operator between Banach spaces is called a Dieudonné operator ( = weakly completely continuous operator) if it maps weakly Cauchy sequences to weakly convergent sequences. Let (Ω,Σ,μ) be a finite measure space, and let X and Y be Banach spaces. We study Dieudonné operators T: L¹(X) → Y. Let stand for the canonical injection. We show that if X is almost reflexive and T: L¹(X) → Y is a Dieudonné operator, then is a weakly compact operator. Moreover, we obtain that if T: L¹(X)...
Let φ and ψ be analytic self-maps of 𝔻. Using the pseudo-hyperbolic distance ρ(φ,ψ), we completely characterize the boundedness and compactness of the difference of generalized weighted composition operators between growth spaces.
In this paper, we limit our analysis to the difference of the weighted composition operators acting from the Hardy space to weighted-type space in the unit ball of , and give some necessary and sufficient conditions for their boundedness or compactness. The results generalize the corresponding results on the single weighted composition operators and on the differences of composition operators, for example, M. Lindström and E. Wolf: Essential norm of the difference of weighted composition operators....
We consider a special class of sums of non-commuting positive operators on L²-spaces and derive a formula for their holomorphic semigroups. The formula enables us to give sufficient conditions for these operators to admit differentiable -functional calculus for 1 ≤ p ≤ ∞. Our results are in particular applicable to certain sub-Laplacians, Schrödinger operators and sums of even powers of vector fields on solvable Lie groups with exponential volume growth.