Displaying 861 – 880 of 3251

Showing per page

Expansions and eigenfrequencies for damped wave equations

Michael Hitrik (2001)

Journées équations aux dérivées partielles

We study eigenfrequencies and propagator expansions for damped wave equations on compact manifolds. In the strongly damped case, the propagator is shown to admit an expansion in terms of the finitely many eigenmodes near the real axis, with an error exponentially decaying in time. In the presence of an elliptic closed geodesic not meeting the support of the damping coefficient, we show that there exists a sequence of eigenfrequencies converging rapidly to the real axis. In the case of Zoll manifolds,...

Explicit representation of compact linear operators in Banach spaces via polar sets

David E. Edmunds, Jan Lang (2013)

Studia Mathematica

We consider a compact linear map T acting between Banach spaces both of which are uniformly convex and uniformly smooth; it is supposed that T has trivial kernel and range dense in the target space. It is shown that if the Gelfand numbers of T decay sufficiently quickly, then the action of T is given by a series with calculable coefficients. This provides a Banach space version of the well-known Hilbert space result of E. Schmidt.

Exponentials of bounded normal operators

Aicha Chaban, Mohammed Hichem Mortad (2013)

Colloquium Mathematicae

The present paper is mainly concerned with equations involving exponentials of bounded normal operators. Conditions implying commutativity of normal operators are given, without using the known 2πi-congruence-free hypothesis. This is a continuation of a recent work by the second author.

Extensions, dilations and functional models of infinite Jacobi matrix

B. P. Allahverdiev (2005)

Czechoslovak Mathematical Journal

A space of boundary values is constructed for the minimal symmetric operator generated by an infinite Jacobi matrix in the limit-circle case. A description of all maximal dissipative, accretive and selfadjoint extensions of such a symmetric operator is given in terms of boundary conditions at infinity. We construct a selfadjoint dilation of maximal dissipative operator and its incoming and outgoing spectral representations, which makes it possible to determine the scattering matrix of dilation....

Currently displaying 861 – 880 of 3251