The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 1121 – 1140 of 3251

Showing per page

Integral representations of unbounded operators by infinitely smooth kernels

Igor Novitskiî (2005)

Open Mathematics

In this paper, we prove that every unbounded linear operator satisfying the Korotkov-Weidmann characterization is unitarily equivalent to an integral operator in L 2(R), with a bounded and infinitely smooth Carleman kernel. The established unitary equivalence is implemented by explicitly definable unitary operators.

Interpolation by elementary operators

Bojan Magajna (1993)

Studia Mathematica

Given two n-tuples a = ( a 1 , . . . , a n ) and b = ( b 1 , . . . , b n ) of bounded linear operators on a Hilbert space the question of when there exists an elementary operator E such that E a j = b j for all j =1,...,n, is studied. The analogous question for left multiplications (instead of elementary operators) is answered in any C*-algebra A, as a consequence of the characterization of closed left A-submodules in A n .

Currently displaying 1121 – 1140 of 3251