Displaying 1341 – 1360 of 3251

Showing per page

Metric entropy of convex hulls in Hilbert spaces

Wenbo Li, Werner Linde (2000)

Studia Mathematica

Let T be a precompact subset of a Hilbert space. We estimate the metric entropy of co(T), the convex hull of T, by quantities originating in the theory of majorizing measures. In a similar way, estimates of the Gelfand width are provided. As an application we get upper bounds for the entropy of co(T), T = t 1 , t 2 , . . . , | | t j | | a j , by functions of the a j ’s only. This partially answers a question raised by K. Ball and A. Pajor (cf. [1]). Our estimates turn out to be optimal in the case of slowly decreasing sequences ( a j ) j = 1 .

Mittelergodische Halbgruppen linearer Operatoren

Rainer J. Nagel (1973)

Annales de l'institut Fourier

A semigroup H in L s ( E ) , E a Banach space, is called mean ergodic, if its closed convex hull in L s ( E ) has a zero element. Compact groups, compact abelian semigroups or contractive semigroups on Hilbert spaces are mean ergodic.Banach lattices prove to be a natural frame for further mean ergodic theorems: let H be a bounded semigroup of positive operators on a Banach lattice E with order continuous norm. H is mean ergodic if there is a H -subinvariant quasi-interior point of E + and a H ' -subinvariant strictly...

Currently displaying 1341 – 1360 of 3251