A note on the range of generalized derivation.
Let L(H) denote the algebra of bounded linear operators on a complex separable and infinite dimensional Hilbert space H. For A, B ∈ L(H), the generalized derivation δA,B associated with (A, B), is defined by δA,B(X) = AX - XB for X ∈ L(H). In this note we give some sufficient conditions for A and B under which the intersection between the closure of the range of δA,B respect to the given topology and the kernel of δA*,B* vanishes.