On a trace inequality for one-sided potentials and applications to the solvability of nonlinear integral equations.
Antilinear operators on a complex Hilbert space arise in various contexts in mathematical physics. In this paper, an analogue of the Weyl-von Neumann theorem for antilinear self-adjoint operators is proved, i.e. that an antilinear self-adjoint operator is the sum of a diagonalizable operator and of a compact operator with arbitrarily small Schatten p-norm. On the way, we discuss conjugations and their properties. A spectral integral representation for antilinear self-adjoint operators is constructed....
Let and . We prove that , the ideal of operators of Geľfand type , is contained in the ideal of -absolutely summing operators. For this generalizes a result of G. Bennett given for operators on a Hilbert space.
Let H(B) denote the space of all holomorphic functions on the unit ball B of ℂⁿ. Let φ be a holomorphic self-map of B and g ∈ H(B) such that g(0) = 0. We study the integral-type operator , f ∈ H(B). The boundedness and compactness of from Privalov spaces to Bloch-type spaces and little Bloch-type spaces are studied
It is proved that a doubly stochastic operator P is weakly asymptotically cyclic if it almost overlaps supports. If moreover P is Frobenius-Perron or Harris then it is strongly asymptotically cyclic.