Displaying 1901 – 1920 of 3251

Showing per page

Operator positivity and analytic models of commuting tuples of operators

Monojit Bhattacharjee, Jaydeb Sarkar (2016)

Studia Mathematica

We study analytic models of operators of class C · 0 with natural positivity assumptions. In particular, we prove that for an m-hypercontraction T C · 0 on a Hilbert space , there exist Hilbert spaces and ⁎ and a partially isometric multiplier θ ∈ ℳ (H²(),A²ₘ(⁎)) such that θ = A ² ( ) θ H ² ( ) and T P θ M z | θ , where A²ₘ(⁎) is the ⁎-valued weighted Bergman space and H²() is the -valued Hardy space over the unit disc . We then proceed to study analytic models for doubly commuting n-tuples of operators and investigate their applications...

Operator semigroups in Banach space theory

Pietro Aiena, Manuel González, Antonio Martínez-Abejón (2001)

Bollettino dell'Unione Matematica Italiana

In questo lavoro, motivati dalla teoria di Fredholm in spazi di Banach e dalla cosiddetta teoria degli ideali di operatori nel senso di Pietsch, viene definito un nuovo concetto di semigruppo di operatori. Questa nuova definizione include quella di molte classi di operatori già studiate in letteratura, come la classe degli operatori di semi-Fredholm, quella degli operatori tauberiani ed altre ancora. Inoltre permette un nuovo ed unificante approccio ad una serie di problemi in teoria degli operatori...

Operator theoretic properties of semigroups in terms of their generators

S. Blunck, L. Weis (2001)

Studia Mathematica

Let ( T t ) be a C₀ semigroup with generator A on a Banach space X and let be an operator ideal, e.g. the class of compact, Hilbert-Schmidt or trace class operators. We show that the resolvent R(λ,A) of A belongs to if and only if the integrated semigroup S t : = 0 t T s d s belongs to . For analytic semigroups, S t implies T t , and in this case we give precise estimates for the growth of the -norm of T t (e.g. the trace of T t ) in terms of the resolvent growth and the imbedding D(A) ↪ X.

Operators commuting with translations, and systems of difference equations

Miklós Laczkovich (1999)

Colloquium Mathematicae

Let = f : : f i s b o u n d e d , and = f : : f i s L e b e s g u e m e a s u r a b l e . We show that there is a linear operator Φ : such that Φ(f)=f a.e. for every f , and Φ commutes with all translations. On the other hand, if Φ : is a linear operator such that Φ(f)=f for every f , then the group G Φ = a ∈ ℝ:Φ commutes with the translation by a is of measure zero and, assuming Martin’s axiom, is of cardinality less than continuum. Let Φ be a linear operator from into the space of complex-valued measurable functions. We show that if Φ(f) is non-zero for every f ( x ) = e c x , then G Φ must...

Operators of Hankel type

S. Bermudo, S. A. M. Marcantognini, M. D. Morán (2006)

Czechoslovak Mathematical Journal

Hankel operators and their symbols, as generalized by V. Pták and P. Vrbová, are considered. The present note provides a parametric labeling of all the Hankel symbols of a given Hankel operator X by means of Schur class functions. The result includes uniqueness criteria and a Schur like formula. As a by-product, a new proof of the existence of Hankel symbols is obtained. The proof is established by associating to the data of the problem a suitable isometry V so that there is a bijective correspondence...

Operators of the q-oscillator

Franciszek Hugon Szafraniec (2007)

Banach Center Publications

We scrutinize the possibility of extending the result of [19] to the case of q-deformed oscillator for q real; for this we exploit the whole range of the deformation parameter as much as possible. We split the case into two depending on whether a solution of the commutation relation is bounded or not. Our leitmotif is subnormality. The deformation parameter q is reshaped and this is what makes our approach effective. The newly arrived parameter, the operator C, has two remarkable properties: it...

Operators on Lorentz sequence spaces

Subhash Chander Arora, Gopal Datt, Satish Verma (2009)

Mathematica Bohemica

Description of multiplication operators generated by a sequence and composition operators induced by a partition on Lorentz sequence spaces l ( p , q ) , 1 < p , 1 q is presented.

Operators on spaces of analytic functions

K. Seddighi (1994)

Studia Mathematica

Let M z be the operator of multiplication by z on a Banach space of functions analytic on a plane domain G. We say that M z is polynomially bounded if M p C p G for every polynomial p. We give necessary and sufficient conditions for M z to be polynomially bounded. We also characterize the finite-codimensional invariant subspaces and derive some spectral properties of the multiplication operator in case the underlying space is Hilbert.

Currently displaying 1901 – 1920 of 3251