Displaying 21 – 40 of 168

Showing per page

On an integral transform by R. S. Phillips

Sten Bjon (2010)

Open Mathematics

The properties of a transformation f f ˜ h by R.S. Phillips, which transforms an exponentially bounded C 0-semigroup of operators T(t) to a Yosida approximation depending on h, are studied. The set of exponentially bounded, continuous functions f: [0, ∞[→ E with values in a sequentially complete L c-embedded space E is closed under the transformation. It is shown that ( f ˜ h ) k ˜ = f ˜ h + k for certain complex h and k, and that f ( t ) = lim h 0 + f ˜ h ( t ) , where the limit is uniform in t on compact subsets of the positive real line. If f is Hölder-continuous...

On analytic semigroups and cosine functions in Banach spaces

V. Keyantuo, P. Vieten (1998)

Studia Mathematica

If A generates a bounded cosine function on a Banach space X then the negative square root B of A generates a holomorphic semigroup, and this semigroup is the conjugate potential transform of the cosine function. This connection is studied in detail, and it is used for a characterization of cosine function generators in terms of growth conditions on the semigroup generated by B. The characterization relies on new results on the inversion of the vector-valued conjugate potential transform.

On analyticity of Ornstein-Uhlenbeck semigroups

Beniamin Goldys (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let ( R t be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-Uhlenbeck process and let μ denote its Gaussian invariant measure. We show that the semigroup ( R t is analytic in L 2 μ if and only if its generator is variational. In particular, we show that the transition semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process is nondegenerate.

On coerciveness in Besov spaces for abstract parabolic equations of higher order

Yoshitaka Yamamoto (1999)

Studia Mathematica

We are concerned with a relation between parabolicity and coerciveness in Besov spaces for a higher order linear evolution equation in a Banach space. As proved in a preceding work, a higher order linear evolution equation enjoys coerciveness in Besov spaces under a certain parabolicity condition adopted and studied by several authors. We show that for a higher order linear evolution equation coerciveness in Besov spaces forces the parabolicity of the equation. We thus conclude that parabolicity...

On ergodicity for operators with bounded resolvent in Banach spaces

Kirsti Mattila (2011)

Studia Mathematica

We prove results on ergodicity, i.e. on the property that the space is a direct sum of the kernel of an operator and the closure of its range, for closed linear operators A such that | | α ( α - A ) - 1 | | is uniformly bounded for all α > 0. We consider operators on Banach spaces which have the property that the space is complemented in its second dual space by a projection P. Results on ergodicity are obtained under a norm condition ||I - 2P|| ||I - Q|| < 2 where Q is a projection depending on the operator A....

On exit laws for subordinated semigroups by means of 𝒞 1 -subordinators

Mohamed Hmissi, Ezzedine Mliki (2010)

Commentationes Mathematicae Universitatis Carolinae

We study the integral representation of potentials by exit laws in the framework of sub-Markovian semigroups of bounded operators acting on L 2 ( m ) . We mainly investigate subordinated semigroups in the Bochner sense by means of 𝒞 1 -subordinators. By considering the one-sided stable subordinators, we deduce an integral representation for the original semigroup.

On extrapolation spaces

Giuseppe Da Prato, Pierre Grisvard (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si definisce un nuovo tipo di spazi a partire da un dato spazio di Banach X e da un operatore lineare A in X . Tali spazi si possono pensare come spazi di interpolazione D A ( ϑ ) con ϑ negativo.

On group decompositions of bounded cosine sequences

Wojciech Chojnacki (2007)

Studia Mathematica

A two-sided sequence ( c ) n with values in a complex unital Banach algebra is a cosine sequence if it satisfies c n + m + c n - m = 2 c c for any n,m ∈ ℤ with c₀ equal to the unity of the algebra. A cosine sequence ( c ) n is bounded if s u p n | | c | | < . A (bounded) group decomposition for a cosine sequence c = ( c ) n is a representation of c as c = ( b + b - n ) / 2 for every n ∈ ℤ, where b is an invertible element of the algebra (satisfying s u p n | | b | | < , respectively). It is known that every bounded cosine sequence possesses a universally defined group decomposition, here referred...

Currently displaying 21 – 40 of 168