Non-unitary scattering and capture. II. Quantum dynamical semigroup theory
We show that a positive semigroup on with generator A and ||R(α + i β)|| → 0 as |β| → ∞ for some α ∈ ℝ is continuous in the operator norm for t>0. The proof is based on a criterion for norm continuity in terms of “smoothing properties” of certain convolution operators on general Banach spaces and an extrapolation result for the -scale, which may be of independent interest.
Let G be the simplest nilpotent Lie group of step 3. We prove that the densities of the semigroup generated by the sublaplacian on G are not real-analytic.
In this paper, we investigate a class of abstract degenerate fractional differential equations with Caputo derivatives. We consider subordinated fractional resolvent families generated by multivalued linear operators, which do have removable singularities at the origin. Semi-linear degenerate fractional Cauchy problems are also considered in this context.
We study a new class of Markov type semigroups (not strongly continuous in general) in the space of all real, uniformly continuous and bounded functions on a separable metric space E. Our results allow us to characterize the generators of Markov transition semigroups in infinite dimensions such as the heat and the Ornstein-Uhlenbeck semigroups.
We study existence, uniqueness and form of solutions to the equation where α, β, γ and f are given, and stands for the even part of a searched-for differentiable function g. This equation emerged naturally as a result of the analysis of the distribution of a certain random process modelling a population genetics phenomenon.