Stieltjes vectors and cosine functions generators
Let H be a separable real Hilbert space and let E be a separable real Banach space. We develop a general theory of stochastic convolution of ℒ(H,E)-valued functions with respect to a cylindrical Wiener process with Cameron-Martin space H. This theory is applied to obtain necessary and sufficient conditions for the existence of a weak solution of the stochastic abstract Cauchy problem (ACP) (t∈ [0,T]), almost surely, where A is the generator of a -semigroup of bounded linear operators on...
Let be a Hilbert space and a Banach space. We set up a theory of stochastic integration of -valued functions with respect to -cylindrical Liouville fractional Brownian motion with arbitrary Hurst parameter . For we show that a function is stochastically integrable with respect to an -cylindrical Liouville fractional Brownian motion if and only if it is stochastically integrable with respect to an -cylindrical fractional Brownian motion. We apply our results to stochastic evolution equations...
Let H be a separable real Hilbert space and let E be a real Banach space. In this paper we construct a stochastic integral for certain operator-valued functions Φ: (0,T) → ℒ(H,E) with respect to a cylindrical Wiener process . The construction of the integral is given by a series expansion in terms of the stochastic integrals for certain E-valued functions. As a substitute for the Itô isometry we show that the square expectation of the integral equals the radonifying norm of an operator which is...
Let J be an abelian topological semigroup and C a subset of a Banach space X. Let L(X) be the space of bounded linear operators on X and Lip(C) the space of Lipschitz functions ⨍: C → C. We exhibit a large class of semigroups J for which every weakly continuous semigroup homomorphism T: J → L(X) is necessarily strongly continuous. Similar results are obtained for weakly continuous homomorphisms T: J → Lip(C) and for strongly measurable homomorphisms T: J → L(X).
This paper deals with feedback stabilization of second order equations of the form ytt + A0y + u (t) B0y (t) = 0, t ∈ [0, +∞[, where A0 is a densely defined positive selfadjoint linear operator on a real Hilbert space H, with compact inverse and B0 is a linear map in diagonal form. It is proved here that the classical sufficient ad-condition of Jurdjevic-Quinn and Ball-Slemrod with the feedback control u = ⟨yt, B0y⟩H implies the strong stabilization. This result is derived from a general compactness...
This paper deals with feedback stabilization of second order equations of the form ytt + A0y + u (t) B0y (t) = 0, t ∈ [0, +∞[, where A0 is a densely defined positive selfadjoint linear operator on a real Hilbert space H, with compact inverse and B0 is a linear map in diagonal form. It is proved here that the classical sufficient ad-condition of Jurdjevic-Quinn and Ball-Slemrod with the feedback control u = ⟨yt, B0y⟩H implies the strong stabilization. This result is derived from a general compactness theorem...
We extend some recent results for regularized semigroups to strongly continuous n-times integrated C-cosine operator functions. Several equivalent conditions for the existence and uniqueness of solutions of (ACP) are also presented.
Let be an open subset of , the linear space of -vector valued functions defined on , a group of orthogonal matrices mapping onto itself and a linear representation of order of . A suitable group of linear operators of is introduced which leads to a general definition of -invariant linear operator with respect to . When is a finite group, projection operators are explicitly obtained which define a "maximal" decomposition of the function space into a direct sum of subspaces...
Let Y be a Banach space and let be a subspace of an space, for some p ∈ (1,∞). We consider two operators B and C acting on S and Y respectively and satisfying the so-called maximal regularity property. Let ℬ and be their natural extensions to . We investigate conditions that imply that ℬ + is closed and has the maximal regularity property. Extending theorems of Lamberton and Weis, we show in particular that this holds if Y is a UMD Banach lattice and is a positive contraction on for any...