Displaying 101 – 120 of 168

Showing per page

On the invertibility of isometric semigroup representations

C. Batty, D. Greenfield (1994)

Studia Mathematica

Let T be a representation of a suitable abelian semigroup S by isometries on a Banach space. We study the spectral conditions which will imply that T(s) is invertible for each s in S. On the way we analyse the relationship between the spectrum of T, Sp(T,S), and its unitary spectrum S p u ( T , S ) . For S = + n or + n , we establish connections with polynomial convexity.

On the Kantorovich-Rubinstein maximum principle for the Fortet-Mourier norm

Henryk Gacki (2005)

Annales Polonici Mathematici

A new version of the maximum principle is presented. The classical Kantorovich-Rubinstein principle gives necessary conditions for the maxima of a linear functional acting on the space of Lipschitzian functions. The maximum value of this functional defines the Hutchinson metric on the space of probability measures. We show an analogous result for the Fortet-Mourier metric. This principle is then applied in the stability theory of Markov-Feller semigroups.

On the nonlocal Cauchy problem for semilinear fractional order evolution equations

JinRong Wang, Yong Zhou, Michal Fečkan (2014)

Open Mathematics

In this paper, we develop the approach and techniques of [Boucherif A., Precup R., Semilinear evolution equations with nonlocal initial conditions, Dynam. Systems Appl., 2007, 16(3), 507–516], [Zhou Y., Jiao F., Nonlocal Cauchy problem for fractional evolution equations, Nonlinar Anal. Real World Appl., 2010, 11(5), 4465–4475] to deal with nonlocal Cauchy problem for semilinear fractional order evolution equations. We present two new sufficient conditions on existence of mild solutions. The first...

On the positivity of semigroups of operators

Roland Lemmert, Peter Volkmann (1998)

Commentationes Mathematicae Universitatis Carolinae

In a Banach space E , let U ( t ) ( t > 0 ) be a C 0 -semigroup with generating operator A . For a cone K E ...

On the range of a closed operator in an L 1 -space of vector-valued functions

Ryotaro Sato (2005)

Commentationes Mathematicae Universitatis Carolinae

Let X be a reflexive Banach space and A be a closed operator in an L 1 -space of X -valued functions. Then we characterize the range R ( A ) of A as follows. Let 0 λ n ρ ( A ) for all 1 n < , where ρ ( A ) denotes the resolvent set of A , and assume that lim n λ n = 0 and sup n 1 λ n ( λ n - A ) - 1 < . Furthermore, assume that there exists λ ρ ( A ) such that λ ( λ - A ) - 1 1 . Then f R ( A ) is equivalent to sup n 1 ( λ n - A ) - 1 f 1 < . This generalizes Shaw’s result for scalar-valued functions.

On the Schrödinger heat kernel in horn-shaped domains

Gabriele Grillo (2004)

Colloquium Mathematicae

We prove pointwise lower bounds for the heat kernel of Schrödinger semigroups on Euclidean domains under Dirichlet boundary conditions. The bounds take into account non-Gaussian corrections for the kernel due to the geometry of the domain. The results are applied to prove a general lower bound for the Schrödinger heat kernel in horn-shaped domains without assuming intrinsic ultracontractivity for the free heat semigroup.

Currently displaying 101 – 120 of 168