Lipschitzian superposition operators on metric semigroups and abstract convex cones of mappings of finite -variation.
On a closed convex set in with sufficiently smooth () boundary, the stop operator is locally Lipschitz continuous from into . The smoothness of the boundary is essential: A counterexample shows that -smoothness is not sufficient.
Using the Darbo fixed point theorem associated with the measure of noncompactness, we establish the existence of monotonic integrable solution on a half-line ℝ₊ for a nonlinear quadratic functional integral equation.
A brief account of the connections between Carathéodory multifunctions, Scorza-Dragoni multifunctions, product-measurable multifunctions, and superpositionally measurable multifunctions of two variables is given.
AMS Subj. Classification: 47J10, 47H30, 47H10We study some possibilities of nonlinear spectral theories for solving nonlinear operator equations. The main aim is to research a spectrum and establish some kind of nonlinear Fredholm alternative for Hammerstein operator KF.
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
The aim of this paper is to give the proofs of those results that in [4] were only announced, and, at the same time, to propose some possible developments, indicating some of the most significant open problems.
Let X, Y be two separable F-spaces. Let (Ω,Σ,μ) be a measure space with μ complete, non-atomic and σ-finite. Let be the Nemytskiĭ set-valued operator induced by a sup-measurable set-valued function . It is shown that if maps a modular space into subsets of a modular space , then is automatically modular bounded, i.e. for each set K ⊂ N(L(Ω,Σ,μ;X)) such that we have .