Strong convergence theorems of common fixed points for a family of quasi--nonexpansive mappings.
Let be a nonempty closed convex subset of a real Hilbert space such that , a -strict pseudo-contraction for some such that . Consider the following iterative algorithm given by where is defined by , is the metric projection of onto , is a strongly positive linear bounded self-adjoint operator, is a contraction. It is proved that the sequence generated by the above iterative algorithm converges strongly to a fixed point of , which solves a variational inequality related...
This paper deals with feedback stabilization of second order equations of the form ytt + A0y + u (t) B0y (t) = 0, t ∈ [0, +∞[, where A0 is a densely defined positive selfadjoint linear operator on a real Hilbert space H, with compact inverse and B0 is a linear map in diagonal form. It is proved here that the classical sufficient ad-condition of Jurdjevic-Quinn and Ball-Slemrod with the feedback control u = ⟨yt, B0y⟩H implies the strong stabilization. This result is derived from a general compactness...
This paper deals with feedback stabilization of second order equations of the form ytt + A0y + u (t) B0y (t) = 0, t ∈ [0, +∞[, where A0 is a densely defined positive selfadjoint linear operator on a real Hilbert space H, with compact inverse and B0 is a linear map in diagonal form. It is proved here that the classical sufficient ad-condition of Jurdjevic-Quinn and Ball-Slemrod with the feedback control u = ⟨yt, B0y⟩H implies the strong stabilization. This result is derived from a general compactness theorem...
In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay The stability of the zero solution of this eqution provided that . The Caratheodory condition is used for the functions and .
We consider the summation equation, for , in the case where the map may change sign; here is a parameter, which may be understood as the order of an associated discrete fractional boundary value problem. In spite of the fact that is allowed to change sign, by introducing a new cone we are able to establish the existence of at least one positive solution to this problem by imposing some growth conditions on the functions and . Finally, as an application of the abstract existence result,...