Displaying 301 – 320 of 467

Showing per page

Alcune osservazioni sul rango numerico per operatori non lineari

Jürgen Appell, G. Conti, Paola Santucci (1999)

Mathematica Bohemica

We discuss some numerical ranges for Lipschitz continuous nonlinear operators and their relations to spectral sets. In particular, we show that the spectrum defined by Kachurovskij (1969) for Lipschitz continuous operators is contained in the so-called polynomial hull of the numerical range introduced by Rhodius (1984).

A-monotone nonlinear relaxed cocoercive variational inclusions

Ram Verma (2007)

Open Mathematics

Based on the notion of A - monotonicity, a new class of nonlinear variational inclusion problems is presented. Since A - monotonicity generalizes H - monotonicity (and in turn, generalizes maximal monotonicity), results thus obtained, are general in nature.

An abstract Cauchy problem for higher order functional differential inclusions with infinite delay

Tran Dinh Ke, Valeri Obukhovskii, Ngai-Ching Wong, Jen-Chih Yao (2011)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The existence results for an abstract Cauchy problem involving a higher order differential inclusion with infinite delay in a Banach space are obtained. We use the concept of the existence family to express the mild solutions and impose the suitable conditions on the nonlinearity via the measure of noncompactness in order to apply the theory of condensing multimaps for the demonstration of our results. An application to some classes of partial differential equations is given.

An alternative polynomial Daugavet property

Elisa R. Santos (2014)

Studia Mathematica

We introduce a weaker version of the polynomial Daugavet property: a Banach space X has the alternative polynomial Daugavet property (APDP) if every weakly compact polynomial P: X → X satisfies m a x ω | | I d + ω P | | = 1 + | | P | | . We study the stability of the APDP by c₀-, - and ℓ₁-sums of Banach spaces. As a consequence, we obtain examples of Banach spaces with the APDP, namely L ( μ , X ) and C(K,X), where X has the APDP.

Currently displaying 301 – 320 of 467