Displaying 41 – 60 of 69

Showing per page

Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem

Lydia Bouchal a, Karima Mebarki a, Svetlin Georgiev Georgiev b (2022)

Archivum Mathematicum

In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators T + S where I - T is Lipschitz invertible and S a k -set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.

Practical Ulam-Hyers-Rassias stability for nonlinear equations

Jin Rong Wang, Michal Fečkan (2017)

Mathematica Bohemica

In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations...

Preface

Zbigniew Bartosiewicz, Ewa Girejko (2006)

Control and Cybernetics

Properties of a quasi-uniformly monotone operator and its application to the electromagnetic $p$-$\text {curl}$ systems

Chang-Ho Song, Yong-Gon Ri, Cholmin Sin (2022)

Applications of Mathematics

In this paper we propose a new concept of quasi-uniform monotonicity weaker than the uniform monotonicity which has been developed in the study of nonlinear operator equation $Au=b$. We prove that if $A$ is a quasi-uniformly monotone and hemi-continuous operator, then $A^{-1}$ is strictly monotone, bounded and continuous, and thus the Galerkin approximations converge. Also we show an application of a quasi-uniformly monotone and hemi-continuous operator to the proof of the well-posedness and convergence...

Properties of generalized set-valued stochastic integrals

Michał Kisielewicz (2014)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The paper is devoted to properties of generalized set-valued stochastic integrals defined in [10]. These integrals generalize set-valued stochastic integrals defined by E.J. Jung and J.H. Kim in the paper [4]. Up to now we were not able to construct any example of set-valued stochastic processes, different on a singleton, having integrably bounded set-valued integrals defined in [4]. It was shown by M. Michta (see [11]) that in the general case set-valued stochastic integrals defined by E.J. Jung...

Currently displaying 41 – 60 of 69