The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Korovkin theory in normed algebras

Ferdinand Beckhoff (1991)

Studia Mathematica

If A is a normed power-associative complex algebra such that the selfadjoint part is normally ordered with respect to some order, then the Korovkin closure (see the introduction for definitions) of T ∪ {t* ∘ t| t ∈ T} contains J*(T) for any subset T of A. This can be applied to C*-algebras, minimal norm ideals on a Hilbert space, and to H*-algebras. For bounded H*-algebras and dual C*-algebras there is even equality. This answers a question posed in [1].

K-theory of Boutet de Monvel's algebra

Severino T. Melo, Ryszard Nest, Elmar Schrohe (2003)

Banach Center Publications

We consider the norm closure 𝔄 of the algebra of all operators of order and class zero in Boutet de Monvel's calculus on a compact manifold X with boundary ∂X. Assuming that all connected components of X have nonempty boundary, we show that K₁(𝔄) ≃ K₁(C(X)) ⊕ ker χ, where χ: K₀(C₀(T*Ẋ)) → ℤ is the topological index, T*Ẋ denoting the cotangent bundle of the interior. Also K₀(𝔄) is topologically determined. In case ∂X has torsion free K-theory, we get K₀(𝔄) ≃ K₀(C(X)) ⊕ K₁(C₀(T*Ẋ)).

Currently displaying 1 – 3 of 3

Page 1