Page 1

Displaying 1 – 14 of 14

Showing per page

Generalized derivations associated with Hochschild 2-cocycles on some algebras

Jiankui Li, Jiren Zhou (2010)

Czechoslovak Mathematical Journal

We investigate a new type of generalized derivations associated with Hochschild 2-cocycles which was introduced by A. Nakajima. We show that every generalized Jordan derivation of this type from CSL algebras or von Neumann algebras into themselves is a generalized derivation under some reasonable conditions. We also study generalized derivable mappings at zero point associated with Hochschild 2-cocycles on CSL algebras.

Generalized Higher Derivations on Lie Ideals of Triangular Algebras

Mohammad Ashraf, Nazia Parveen, Bilal Ahmad Wani (2017)

Communications in Mathematics

Let 𝔄 = 𝒜 be the triangular algebra consisting of unital algebras 𝒜 and over a commutative ring R with identity 1 and be a unital ( 𝒜 , ) -bimodule. An additive subgroup 𝔏 of 𝔄 is said to be a Lie ideal of 𝔄 if [ 𝔏 , 𝔄 ] 𝔏 . A non-central square closed Lie ideal 𝔏 of 𝔄 is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on 𝔄 , every generalized Jordan triple higher derivation of 𝔏 into 𝔄 is a generalized higher derivation of 𝔏 into 𝔄 .

Generalized Jordan derivations associated with Hochschild 2-cocycles of triangular algebras

Asia Majieed, Jiren Zhou (2010)

Czechoslovak Mathematical Journal

In this paper, we investigate a new type of generalized derivations associated with Hochschild 2-cocycles which is introduced by A.Nakajima (Turk. J. Math. 30 (2006), 403–411). We show that if 𝒰 is a triangular algebra, then every generalized Jordan derivation of above type from 𝒰 into itself is a generalized derivation.

Currently displaying 1 – 14 of 14

Page 1