Decomposability of extremal positive unital maps on M₂(ℂ)
A map φ: Mₘ(ℂ) → Mₙ(ℂ) is decomposable if it is of the form φ = φ₁ + φ₂ where φ₁ is a CP map while φ₂ is a co-CP map. It is known that if m = n = 2 then every positive map is decomposable. Given an extremal unital positive map φ: M₂(ℂ) → M₂(ℂ) we construct concrete maps (not necessarily unital) φ₁ and φ₂ which give a decomposition of φ. We also show that in most cases this decomposition is unique.