An implicit hierarchical fixed-point approach to general variational inequalities in Hilbert spaces.
An optimal control problem is considered where the state of the system is described by a variational inequality for the operator w → εΔ²w - φ(‖∇w‖²)Δw. A set of nonnegative functions φ is used as a control region. The problem is shown to have a solution for every fixed ε > 0. Moreover, the solvability of the limit optimal control problem corresponding to ε = 0 is proved. A compactness property of the solutions of the optimal control problems for ε > 0 and their relation with the limit problem...
We deal with an optimal control problem governed by a pseudoparabolic variational inequality with controls in coefficients and in convex sets of admissible states. The existence theorem for an optimal control parameter will be proved. We apply the theory to the original design problem for a deffection of a viscoelastic plate with an obstacle, where the variable thickness of the plate appears as a control variable.
In this paper we consider hemivariational inequalities of hyperbolic type. The existence result for hemivariational inequality is given and the existence theorem for the optimal shape design problem is shown.
We consider the problem of frictional contact between an piezoelectric body and a conductive foundation. The electro-elastic constitutive law is assumed to be nonlinear and the contact is modelled with the Signorini condition, nonlocal Coulomb friction law and a regularized electrical conductivity condition. The existence of a unique weak solution of the model is established. The finite elements approximation for the problem is presented, and error...
The paper deals with the problem of a quasistatic frictional contact between a nonlinear elastic body and a deformable foundation. The contact is modelled by a normal compliance condition in such a way that the penetration is restricted with a unilateral constraint and associated to the nonlocal friction law with adhesion. The evolution of the bonding field is described by a first-order differential equation. We establish a variational formulation of the mechanical problem and prove an existence...
In questo lavoro viene risolto il problema del contatto tra una membrana ed un suolo od ostacolo elastico con una approssimazione lineare a tratti della soluzione. Sono date alcune formulazioni equivalenti del problema discreto e se ne discutono le corrispondenti proprietà computazionali.