Page 1 Next

Displaying 1 – 20 of 389

Showing per page

A boundary multivalued integral “equation” approach to the semipermeability problem

Jaroslav Haslinger, Charalambos C. Baniotopoulos, Panagiotis D. Panagiotopoulos (1993)

Applications of Mathematics

The present paper concerns the problem of the flow through a semipermeable membrane of infinite thickness. The semipermeability boundary conditions are first considered to be monotone; these relations are therefore derived by convex superpotentials being in general nondifferentiable and nonfinite, and lead via a suitable application of the saddlepoint technique to the formulation of a multivalued boundary integral equation. The latter is equivalent to a boundary minimization problem with a small...

A Clarke–Ledyaev Type Inequality for Certain Non–Convex Sets

Ivanov, M., Zlateva, N. (2000)

Serdica Mathematical Journal

We consider the question whether the assumption of convexity of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case when the point is outside the convex hull of the set we show that Clarke-Ledyaev type inequality holds if and only if there is certain geometrical relation between the point and the set.

A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems

Michael Ortiz, Alexander Mielke (2008)

ESAIM: Control, Optimisation and Calculus of Variations

This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and subsequently...

A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems

Alexander Mielke, Michael Ortiz (2007)

ESAIM: Control, Optimisation and Calculus of Variations

This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and...

A compactness result for a second-order variational discrete model

Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions with bounded hessian, and we give an upper and a lower...

A compactness result for a second-order variational discrete model

Andrea Braides, Anneliese Defranceschi, Enrico Vitali (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a nonlinear discrete scheme depending on second-order finite differences. This is the two-dimensional analog of a scheme which in one dimension approximates a free-discontinuity energy proposed by Blake and Zisserman as a higher-order correction of the Mumford and Shah functional. In two dimension we give a compactness result showing that the continuous problem approximating this difference scheme is still defined on special functions...

A comparison of solvers for linear complementarity problems arising from large-scale masonry structures

Mark Ainsworth, L. Angela Mihai (2006)

Applications of Mathematics

We compare the numerical performance of several methods for solving the discrete contact problem arising from the finite element discretisation of elastic systems with numerous contact points. The problem is formulated as a variational inequality and discretised using piecewise quadratic finite elements on a triangulation of the domain. At the discrete level, the variational inequality is reformulated as a classical linear complementarity system. We compare several state-of-art algorithms that have...

Currently displaying 1 – 20 of 389

Page 1 Next