Page 1 Next

Displaying 1 – 20 of 147

Showing per page

Calculus of variations with differential forms

Saugata Bandyopadhyay, Bernard Dacorogna, Swarnendu Sil (2015)

Journal of the European Mathematical Society

We study integrals of the form Ω f d ω , where 1 k n , f : Λ k is continuous and ω is a k - 1 -form. We introduce the appropriate notions of convexity, namely ext. one convexity, ext. quasiconvexity and ext. polyconvexity. We study their relations, give several examples and counterexamples. We finally conclude with an application to a minimization problem.

Caratterizzazione dei Γ -limiti d'ostacoli unilaterali

Placido Longo (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we complete the characterization of those f , μ and ν such that w H 1 ( Ω ) 2 + B f ( x , w ( x ) ) d μ + ν ( B ) is Γ ( L 2 ( Ω ) - ) limit of a sequence of obstacles w H 1 ( Ω ) 2 + Φ h ( w , B ) where Φ h ( w , B ) = { 0 if w φ h a.e. o n B , + otherwise .

Characterization of optimal shapes and masses through Monge-Kantorovich equation

Guy Bouchitté, Giuseppe Buttazzo (2001)

Journal of the European Mathematical Society

We study some problems of optimal distribution of masses, and we show that they can be characterized by a suitable Monge-Kantorovich equation. In the case of scalar state functions, we show the equivalence with a mass transport problem, emphasizing its geometrical approach through geodesics. The case of elasticity, where the state function is vector valued, is also considered. In both cases some examples are presented.

Characterization of the limit load in the case of an unbounded elastic convex

Adnene Elyacoubi, Taieb Hadhri (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we consider a solid body Ω 3 constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces λ f and a density of forces λ g acting on the boundary where the real λ is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by λ ¯ beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...

Characterization of the limit load in the case of an unbounded elastic convex

Adnene Elyacoubi, Taieb Hadhri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we consider a solid body Ω 3 constituted by a nonhomogeneous elastoplastic material, submitted to a density of body forces λ f and a density of forces λ g acting on the boundary where the real λ is the loading parameter. The problem is to determine, in the case of an unbounded convex of elasticity, the Limit load denoted by λ ¯ beyond which there is a break of the structure. The case of a bounded convex of elasticity is done in [El-Fekih and Hadhri, RAIRO: Modél. Math. Anal. Numér. 29 (1995)...

Currently displaying 1 – 20 of 147

Page 1 Next