The Monge problem on non-compact manifolds
In this paper, we propose an industrial symbiosis network equilibrium model by using nonlinear complementarity theory. The industrial symbiosis network consists of industrial producers, industrial consumers, industrial decomposers and demand markets, which imitates natural ecosystem by means of exchanging by-products and recycling useful materials exacted from wastes. The industrial producers and industrial consumers are assumed to be concerned with maximization of economic profits as well as minimization...
We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing sequences...
We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the 3d formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing...
The moving average (MA) chart, the exponentially weighted moving average (EWMA) chart and the cumulative sum (CUSUM) chart are the most popular schemes for detecting shifts in a relevant process parameter. Any control chart system of span is specified by a partition of the space into three disjoint parts. We call this partition as the control chart frame of span A shift in the process parameter is signalled at time by having the vector of the last sample characteristics fall out of the...
{ll -div (|Duh|p-2 Duh)=g, & in D Eh uhH1,p0(D Eh). . where and are random subsets of a bounded open set of . By...
The aim of this paper is to study the unilateral contact condition (Signorini problem) for polyconvex functionals with linear growth at infinity. We find the lower semicontinuous relaxation of the original functional (defined over a subset of the space of bounded variations BV(Ω)) and we prove the existence theorem. Moreover, we discuss the Winkler unilateral contact condition. As an application, we show a few examples of elastic-plastic potentials for finite displacements.
To find nonlinear minimization problems are considered and standard -regularity assumptions on the criterion function and constrained functions are reduced to -regularity. With the aid of the generalized second order directional derivative for real-valued functions, a new second order necessary optimality condition and a new second order sufficient optimality condition for these problems are derived.