The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Previous Page 20

Displaying 381 – 389 of 389

Showing per page

Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions

Paweł Strzelecki (1996)

Colloquium Mathematicae

We prove that minimizers u W 1 , n of the functional E ( u ) = 1 / n | u | n d x + 1 / ( 4 n ) ( 1 - | u | 2 ) 2 d x , ⊂ n , n ≥ 3, which satisfy the Dirichlet boundary condition u = g on for g: → S n - 1 with zero topological degree, converge in W 1 , n and C l o c α for any α<1 - upon passing to a subsequence k 0 - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.

Asymptotics of an optimal compliance-location problem

Giuseppe Buttazzo, Filippo Santambrogio, Nicolas Varchon (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the problem of placing a Dirichlet region made by n small balls of given radius in a given domain subject to a force f in order to minimize the compliance of the configuration. Then we let n tend to infinity and look for the Γ-limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.

Augmented Lagrangian methods for variational inequality problems

Alfredo N. Iusem, Mostafa Nasri (2010)

RAIRO - Operations Research

We introduce augmented Lagrangian methods for solving finite dimensional variational inequality problems whose feasible sets are defined by convex inequalities, generalizing the proximal augmented Lagrangian method for constrained optimization. At each iteration, primal variables are updated by solving an unconstrained variational inequality problem, and then dual variables are updated through a closed formula. A full convergence analysis is provided, allowing for inexact solution of the subproblems. ...

Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate

Claudio Saccon (1993)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano problemi di autovalori per disequazioni variazionali semilineari ellittiche con un ostacolo puntuale sulla derivata prima della funzione incognita. Si mette in particolare in evidenza il ruolo della «ipotesi di non tangenza» tra il convesso, che viene definito dalla condizione di ostacolo, e la sfera dello spazio funzionale, su cui è naturale studiare un problema di autovalori. Tale condizione viene analizzata in alcuni casi concreti e si indicano alcune ipotesi che, garantendone la...

Currently displaying 381 – 389 of 389

Previous Page 20