Asymptotically Linear Elliptic Boundary Value Problems.
We prove that minimizers of the functional , ⊂ , n ≥ 3, which satisfy the Dirichlet boundary condition on for g: → with zero topological degree, converge in and for any α<1 - upon passing to a subsequence - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.
We consider the problem of placing a Dirichlet region made by n small balls of given radius in a given domain subject to a force f in order to minimize the compliance of the configuration. Then we let n tend to infinity and look for the Γ-limit of suitably scaled functionals, in order to get informations on the asymptotical distribution of the centres of the balls. This problem is both linked to optimal location and shape optimization problems.
We introduce augmented Lagrangian methods for solving finite dimensional variational inequality problems whose feasible sets are defined by convex inequalities, generalizing the proximal augmented Lagrangian method for constrained optimization. At each iteration, primal variables are updated by solving an unconstrained variational inequality problem, and then dual variables are updated through a closed formula. A full convergence analysis is provided, allowing for inexact solution of the subproblems. ...
Si studiano problemi di autovalori per disequazioni variazionali semilineari ellittiche con un ostacolo puntuale sulla derivata prima della funzione incognita. Si mette in particolare in evidenza il ruolo della «ipotesi di non tangenza» tra il convesso, che viene definito dalla condizione di ostacolo, e la sfera dello spazio funzionale, su cui è naturale studiare un problema di autovalori. Tale condizione viene analizzata in alcuni casi concreti e si indicano alcune ipotesi che, garantendone la...