Displaying 1161 – 1180 of 2377

Showing per page

Modelling and control in pseudoplate problem with discontinuous thickness

Ján Lovíšek (2009)

Applications of Mathematics

This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control...

Modification of unfolding approach to two-scale convergence

Jan Franců (2010)

Mathematica Bohemica

Two-scale convergence is a powerful mathematical tool in periodic homogenization developed for modelling media with periodic structure. The contribution deals with the classical definition, its problems, the ``dual'' definition based on the so-called periodic unfolding. Since in the case of domains with boundary the unfolding operator introduced by D. Cioranescu, A. Damlamian, G. Griso does not satisfy the crucial integral preserving property, the contribution proposes a modified unfolding operator...

Modified golden ratio algorithms for pseudomonotone equilibrium problems and variational inequalities

Lulu Yin, Hongwei Liu, Jun Yang (2022)

Applications of Mathematics

We propose a modification of the golden ratio algorithm for solving pseudomonotone equilibrium problems with a Lipschitz-type condition in Hilbert spaces. A new non-monotone stepsize rule is used in the method. Without such an additional condition, the theorem of weak convergence is proved. Furthermore, with strongly pseudomonotone condition, the $R$-linear convergence rate of the method is established. The results obtained are applied to a variational inequality problem, and the convergence rate...

Monotone measures with bad tangential behavior in the plane

Robert Černý, Jan Kolář, Mirko Rokyta (2011)

Commentationes Mathematicae Universitatis Carolinae

We show that for every ε > 0 , there is a set A 2 such that 1 A is a monotone measure, the corresponding tangent measures at the origin are not unique and 1 A has the 1 -dimensional density between 1 and 3 + ε everywhere on the support.

Monotonicity properties of minimizers and relaxation for autonomous variational problems

Giovanni Cupini, Cristina Marcelli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the following classical autonomous variational problem minimize F ( v ) = a b f ( v ( x ) , v ' ( x ) ) x ̣ : v A C ( [ a , b ] ) , v ( a ) = α , v ( b ) = β , where the Lagrangianf is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational problems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence or non-existence criteria.

Monotonicity properties of minimizers and relaxation for autonomous variational problems

Giovanni Cupini, Cristina Marcelli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the following classical autonomous variational problem minimize F ( v ) = a b f ( v ( x ) , v ' ( x ) ) x ̣ : v A C ( [ a , b ] ) , v ( a ) = α , v ( b ) = β , where the Lagrangian f is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational problems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence or non-existence criteria.

Multiperiod supply chain network equilibrium model with electronic commerce and multicriteria decision-making

Guoshan Liu, Shiqin Xu (2012)

RAIRO - Operations Research - Recherche Opérationnelle

In this paper, we develop a supply chain network equilibrium model in which electronic commerce in the presence of both B2B (business-to-business) and B2C (business-to-consumer) transactions, multiperiod decision-making and multicriteria decision-making are integrated. The model consists of three tiers of decision-makers (manufacturers, retailers and consumers at demand markets) who compete within a tier but may cooperate between tiers. Both manufacturers and retailers are concerned with maximization...

Multiperiod supply chain network equilibrium model with electronic commerce and multicriteria decision-making∗∗∗

Guoshan Liu, Shiqin Xu (2012)

RAIRO - Operations Research

In this paper, we develop a supply chain network equilibrium model in which electronic commerce in the presence of both B2B (business-to-business) and B2C (business-to-consumer) transactions, multiperiod decision-making and multicriteria decision-making are integrated. The model consists of three tiers of decision-makers (manufacturers, retailers and consumers at demand markets) who compete within a tier but may cooperate between tiers. Both manufacturers and retailers are concerned with maximization...

Multi-phase structural optimization via a level set method

G. Allaire, C. Dapogny, G. Delgado, G. Michailidis (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the optimal distribution of several elastic materials in a fixed working domain. In order to optimize both the geometry and topology of the mixture we rely on the level set method for the description of the interfaces between the different phases. We discuss various approaches, based on Hadamard method of boundary variations, for computing shape derivatives which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for a sharp interface involves jump...

Currently displaying 1161 – 1180 of 2377