Displaying 1201 – 1220 of 2377

Showing per page

New versions on Nikaidô's coincidence theorem

Liang-Ju Chu, Ching-Yan Lin (2002)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In 1959, Nikaidô established a remarkable coincidence theorem in a compact Hausdorff topological space, to generalize and to give a unified treatment to the results of Gale regarding the existence of economic equilibrium and the theorems in game problems. The main purpose of the present paper is to deduce several generalized key results based on this very powerful result, together with some KKM property. Indeed, we shall simplify and reformulate a few coincidence theorems on acyclic multifunctions,...

Newton and conjugate gradient for harmonic maps from the disc into the sphere

Morgan Pierre (2004)

ESAIM: Control, Optimisation and Calculus of Variations

We compute numerically the minimizers of the Dirichlet energy E ( u ) = 1 2 B 2 | u | 2 d x among maps u : B 2 S 2 from the unit disc into the unit sphere that satisfy a boundary condition and a degree condition. We use a Sobolev gradient algorithm for the minimization and we prove that its continuous version preserves the degree. For the discretization of the problem we use continuous P 1 finite elements. We propose an original mesh-refining strategy needed to preserve the degree with the discrete version of the algorithm (which is a preconditioned...

Newton's methods for variational inclusions under conditioned Fréchet derivative

Ioannis K. Argyros, Saïd Hilout (2007)

Applicationes Mathematicae

Estimates of the radius of convergence of Newton's methods for variational inclusions in Banach spaces are investigated under a weak Lipschitz condition on the first Fréchet derivative. We establish the linear convergence of Newton's and of a variant of Newton methods using the concepts of pseudo-Lipschitz set-valued map and ω-conditioned Fréchet derivative or the center-Lipschitz condition introduced by the first author.

Noncoercive hemivariational inequality and its applications in nonconvex unilateral mechanics

Daniel Goeleven (1996)

Applications of Mathematics

This paper is devoted to the study of a class of hemivariational inequalities which was introduced by P. D. Panagiotopoulos [31] and later by Z. Naniewicz [22]. These variational formulations are natural nonconvex generalizations [15–17], [22–33] of the well-known variational inequalities. Several existence results are proved in [15]. In this paper, we are concerned with some related results and several applications.

Nonconvex Duality and Semicontinuous Proximal Solutions of HJB Equation in Optimal Control

Mustapha Serhani, Nadia Raïssi (2009)

RAIRO - Operations Research

In this work, we study an optimal control problem dealing with differential inclusion. Without requiring Lipschitz condition of the set valued map, it is very hard to look for a solution of the control problem. Our aim is to find estimations of the minimal value, (α), of the cost function of the control problem. For this, we construct an intermediary dual problem leading to a weak duality result, and then, thanks to additional assumptions of monotonicity of proximal subdifferential, we give a more...

Nonlinear Variational Inequalities Depending on a Parameter

Goeleven, D., Théra, M. (1995)

Serdica Mathematical Journal

This paper develops the results announced in the Note [14]. Using an eigenvalue problem governed by a variational inequality, we try to unify the theory concerning the post-critical equilibrium state of a thin elastic plate subjected to unilateral conditions.

Currently displaying 1201 – 1220 of 2377