Convergence rate of the solutions of singularly perturbed time-optimal control problems
The numerical minimization of the functional , is addressed. The function is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that can be equivalently minimized on the convex set and then regularized with a sequence , of stricdy convex functionals defined on . Then both and , can be discretized by continuous linear finite elements. The convexity property of the functionals on is useful in the numerical minimization...
This paper deals with the theory of linear elliptic partial differential equations with bounded measurable coefficients. We construct in two dimensions examples of weak and so-called very weak solutions, with critical integrability properties, both to isotropic equations and to equations in non-divergence form. These examples show that the general theory, developed in [1, 24] and [2], cannot be extended under any restriction on the essential range of the coefficients. Our constructions are based...
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.
Critical points of a variant of the Ambrosio-Tortorelli functional, for which non-zero Dirichlet boundary conditions replace the fidelity term, are investigated. They are shown to converge to particular critical points of the corresponding variant of the Mumford-Shah functional; those exhibit many symmetries. That Dirichlet variant is the natural functional when addressing a problem of brittle fracture in an elastic material.