Displaying 141 – 160 of 389

Showing per page

On the Argmin-sets of stochastic processes and their distributional convergence in Fell-type-topologies

Dietmar Ferger (2011)

Kybernetika

Let ϵ - ( Z ) be the collection of all ϵ -optimal solutions for a stochastic process Z with locally bounded trajectories defined on a topological space. For sequences ( Z n ) of such stochastic processes and ( ϵ n ) of nonnegative random variables we give sufficient conditions for the (closed) random sets ϵ n - ( Z n ) to converge in distribution with respect to the Fell-topology and to the coarser Missing-topology.

On the best observation of wave and Schrödinger equations in quantum ergodic billiards

Yannick Privat, Emmanuel Trélat, Enrique Zuazua (2012)

Journées Équations aux dérivées partielles

This paper is a proceedings version of the ongoing work [20], and has been the object of the talk of the second author at Journées EDP in 2012.In this work we investigate optimal observability properties for wave and Schrödinger equations considered in a bounded open set Ω n , with Dirichlet boundary conditions. The observation is done on a subset ω of Lebesgue measure | ω | = L | Ω | , where L ( 0 , 1 ) is fixed. We denote by 𝒰 L the class of all possible such subsets. Let T > 0 . We consider first the benchmark problem of maximizing...

On the binding of polarons in a mean-field quantum crystal

Mathieu Lewin, Nicolas Rougerie (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a multi-polaron model obtained by coupling the many-body Schrödinger equation for N interacting electrons with the energy functional of a mean-field crystal with a localized defect, obtaining a highly non linear many-body problem. The physical picture is that the electrons constitute a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility to form a bound state of electrons via their interaction with the polarizable background....

On the condition of Λ-convexity in some problems of weak continuity and weak lower semicontinuity

Agnieszka Kałamajska (2001)

Colloquium Mathematicae

We study the functional I f ( u ) = Ω f ( u ( x ) ) d x , where u=(u₁, ..., uₘ) and each u j is constant along some subspace W j of ℝⁿ. We show that if intersections of the W j ’s satisfy a certain condition then I f is weakly lower semicontinuous if and only if f is Λ-convex (see Definition 1.1 and Theorem 1.1). We also give a necessary and sufficient condition on W j j = 1 , . . . , m to have the equivalence: I f is weakly continuous if and only if f is Λ-affine.

On the continuity of minimizers for quasilinear functionals

David Cruz-Uribe, Patrizia Di Gironimo, Luigi D'Onofrio (2012)

Czechoslovak Mathematical Journal

In this paper we establish a continuity result for local minimizers of some quasilinear functionals that satisfy degenerate elliptic bounds. The non-negative function which measures the degree of degeneracy is assumed to be exponentially integrable. The minimizers are shown to have a modulus of continuity controlled by log log ( 1 / | x | ) - 1 . Our proof adapts ideas developed for solutions of degenerate elliptic equations by J. Onninen, X. Zhong: Continuity of solutions of linear, degenerate elliptic equations, Ann....

Currently displaying 141 – 160 of 389