Optimal control for a nonlinear age-structured population dynamics model.
In this paper we consider the problem of optimal control of the model for a rotating body beam, which describes the dynamics of motion of a beam attached perpendicularly to the center of a rigid cylinder and rotating with the cylinder. The control is applied on the cylinder via a torque to suppress the vibrations of the beam. We prove that there exists at least one optimal control and derive a necessary condition for the control. Furthermore, on the basis of iteration method, we propose numerical...
In this paper we consider the problem of optimal control of the model for a rotating body beam, which describes the dynamics of motion of a beam attached perpendicularly to the center of a rigid cylinder and rotating with the cylinder. The control is applied on the cylinder via a torque to suppress the vibrations of the beam. We prove that there exists at least one optimal control and derive a necessary condition for the control. Furthermore, on the basis of iteration method, we propose ...
We study here an optimal control problem for a semilinear elliptic equation with an exponential nonlinearity, such that we cannot expect to have a solution of the state equation for any given control. We then have to speak of pairs (control, state). After having defined a suitable functional class in which we look for solutions, we prove existence of an optimal pair for a large class of cost functions using a non standard compactness argument. Then, we derive a first order optimality system assuming...
We study the numerical aspect of the optimal control of problems governed by a linear elliptic partial differential equation (PDE). We consider here the gas flow in porous media. The observed variable is the flow field we want to maximize in a given part of the domain or its boundary. The control variable is the pressure at one part of the boundary or the discharges of some wells located in the interior of the domain. The objective functional is a balance between the norm of the flux in the observation...
We study an optimal boundary control problem for the two dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle. The control acts through the Dirichlet boundary condition. We first establish the existence and uniqueness of the solution for the two-dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle with inhomogeneous Dirichlet boundary data, not necessarily smooth. Then, we prove the existence and uniqueness of the optimal solution over...
We study first order optimality systems for the control of a system governed by a variational inequality and deal with Lagrange multipliers: is it possible to associate to each pointwise constraint a multiplier to get a “good” optimality system? We give positive and negative answers for the finite and infinite dimensional cases. These results are compared with the previous ones got by penalization or differentiation.
In this paper we study some optimal control problems of systems governed by quasilinear elliptic equations in divergence form with non differentiable coefficients at the origin. We prove existence of solutions and derive the optimality conditions by considering a perturbation of the differential operator coefficients that removes the singularity at the origin. Regularity of optimal controls is also deduced.
We consider optimal distributed and boundary control problems for semilinear parabolic equations, where pointwise constraints on the control and pointwise mixed control-state constraints of bottleneck type are given. Our main result states the existence of regular Lagrange multipliers for the state-constraints. Under natural assumptions, we are able to show the existence of bounded and measurable Lagrange multipliers. The method is based on results from the theory of continuous linear programming...