Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities
In this paper we prove a H-convergence type result for the homogenization of systems the coefficients of which satisfy a functional ellipticity condition and a strong equi-integrability condition. The equi-integrability assumption allows us to control the fact that the coefficients are not equi-bounded. Since the truncation principle used for scalar equations does not hold for vector-valued systems, we present an alternative approach based on an approximation result by Lipschitz functions due to...
The paper deals with the analysis and the numerical solution of the topology optimization of system governed by variational inequalities using the combined level set and phase field rather than the standard level set approach. The standard level set method allows to evolve a given sharp interface but is not able to generate holes unless the topological derivative is used. The phase field method indicates the position of the interface in a blurry way but is flexible in the holes generation. In the...
We consider a class of second-gradient elasticity models for which the internal potential energy is taken as the sum of a convex function of the second gradient of the deformation and a general function of the gradient. However, in consonance with classical nonlinear elasticity, the latter is assumed to grow unboundedly as the determinant of the gradient approaches zero. While the existence of a minimizer is routine, the existence of weak solutions is not, and we focus our efforts on that question...
We consider a class of second-gradient elasticity models for which the internal potential energy is taken as the sum of a convex function of the second gradient of the deformation and a general function of the gradient. However, in consonance with classical nonlinear elasticity, the latter is assumed to grow unboundedly as the determinant of the gradient approaches zero. While the existence of a minimizer is routine, the existence of weak solutions is not, and we focus our efforts on that question...
This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators. Part I: Let be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let be the corresponding linearly independent (normalized) eigenfunctions...
For optimal control problems with ordinary differential equations where the -norm of the control is minimized, often bang-bang principles hold. For systems that are governed by a hyperbolic partial differential equation, the situation is different: even if a weak form of the bang-bang principle still holds for the wave equation, it implies no restriction on the form of the optimal control. To illustrate that for the Dirichlet boundary control of the wave equation in general not even feasible...
The maximum principle for optimal control problems of fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in short) in the global form is obtained, under the assumptions that the diffusion coefficients do not contain the control variable, but the control domain need not to be convex. We apply our stochastic maximum principle (SMP in short) to investigate the optimal control problems of a class of stochastic partial differential equations (SPDEs in short). And as an example...
The maximum principle for optimal control problems of fully coupled forward-backward doubly stochastic differential equations (FBDSDEs in short) in the global form is obtained, under the assumptions that the diffusion coefficients do not contain the control variable, but the control domain need not to be convex. We apply our stochastic maximum principle (SMP in short) to investigate the optimal control problems of a class of stochastic partial differential equations (SPDEs in short). And as an...
Optimal control problems for the heat equation with pointwise bilateral control-state constraints are considered. A locally superlinearly convergent numerical solution algorithm is proposed and its mesh independence is established. Further, for the efficient numerical solution reduced space and Schur complement based preconditioners are proposed which take into account the active and inactive set structure of the problem. The paper ends by numerical tests illustrating our theoretical findings and...
Optimal control problems for the heat equation with pointwise bilateral control-state constraints are considered. A locally superlinearly convergent numerical solution algorithm is proposed and its mesh independence is established. Further, for the efficient numerical solution reduced space and Schur complement based preconditioners are proposed which take into account the active and inactive set structure of the problem. The paper ends by numerical tests illustrating our theoretical findings and comparing...
In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...
In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...
For a class of 2-D elastic energies we show that a radial equilibrium solution is the unique global minimizer in a subclass of all admissible maps. The boundary constraint is a double cover of ; the minimizer is and is such that vanishes at one point.
For a class of 2-D elastic energies we show that a radial equilibrium solution is the unique global minimizer in a subclass of all admissible maps. The boundary constraint is a double cover of S1; the minimizer u is C1 and is such that vanishes at one point.