Previous Page 2

Displaying 21 – 39 of 39

Showing per page

Un résultat d'existence en optimisation de forme en utilisant une propriété géométrique de la normale

M. Barkatou, A. Henrot (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Dans cet article nous prouvons un nouveau résultat d'existence pour une classe de problèmes d'optimisation de forme assez générale. Les ouverts que nous considérons possèdent une contrainte de nature géométrique sur la normale intérieure. Ce travail est motivé par la formulation variationnelle d'un problème à frontière libre dont la solution possède cette propriété géométrique.

Un risultato di perturbazione per una classe di problemi ellittici variazionali di tipo superlineare

Luisa Di Piazza (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si considera il problema al contorno - Δ u = f ( x , u ) + ϵ ψ ( x , u ) in Ω , u | Ω = 0 , dove Ω n è un aperto limitato e connesso ed ϵ è un parametro reale. Si prova che, se f ( x , s ) + ϵ ψ ( x , s ) è «superlineare» ed ϵ è abbastanza piccolo, il problema precedente ha almeno tre soluzioni distinte.

Una caracterización dual de optimalidad para optimización convexa.

José Manuel Gutiérrez Díez (1984)

Trabajos de Estadística e Investigación Operativa

Mediante el uso de una generalización de los subgradientes, se demuestra una condición dual de optimalidad necesaria y suficiente para Optimización Convexa. No se requiere la cualificación de restricciones en el caso finito-dimensional.

Une approche géométrique du contrôle optimal de l’arc atmosphérique de la navette spatiale

Bernard Bonnard, Emmanuel Trélat (2002)

ESAIM: Control, Optimisation and Calculus of Variations

L’objectif de ce travail est de faire quelques remarques géométriques et des calculs préliminaires pour construire l’arc atmosphérique optimal d’une navette spatiale (problème de rentrée sur Terre ou programme d’exploration de Mars). Le système décrivant les trajectoires est de dimension 6, le contrôle est l’angle de gîte cinématique et le coût est l’intégrale du flux thermique. Par ailleurs il y a des contraintes sur l’état (flux thermique, accélération normale et pression dynamique). Notre étude...

Une approche géométrique du contrôle optimal de l'arc atmosphérique de la navette spatiale

Bernard Bonnard, Emmanuel Trélat (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The aim of this article is to make some geometric remarks and some preliminary calculations in order to construct the optimal atmospheric arc of a spatial shuttle (problem of reentry on Earth or Mars Sample Return project). The system describing the trajectories is in dimension 6, the control is the bank angle and the cost is the total thermal flux. Moreover there are state constraints (thermal flux, normal acceleration and dynamic pressure). Our study is mainly geometric and is founded on the...

Unilateral elastic subsoil of Winkler's type: Semi-coercive beam problem

Stanislav Sysala (2008)

Applications of Mathematics

The mathematical model of a beam on a unilateral elastic subsoil of Winkler's type and with free ends is considered. Such a problem is non-linear and semi-coercive. The additional assumptions on the beam load ensuring the problem solvability are formulated and the existence, the uniqueness of the solution and the continuous dependence on the data are proved. The cases for which the solutions need not be stable with respect to the small changes of the load are described. The problem is approximated...

Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems

Maria Do Rosário de Pinho, Maria Margarida Ferreira, Fernando Fontes (2005)

ESAIM: Control, Optimisation and Calculus of Variations

Necessary conditions of optimality in the form of Unmaximized Inclusions (UI) are derived for optimal control problems with state constraints. The conditions presented here generalize earlier optimality conditions to problems that may be nonconvex. The derivation of UI-type conditions in the absence of the convexity assumption is of particular importance when deriving necessary conditions for constrained problems. We illustrate this feature by establishing, as an application, optimality conditions...

Unmaximized inclusion necessary conditions for nonconvex constrained optimal control problems

Maria do Rosário de Pinho, Maria Margarida Ferreira, Fernando Fontes (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Necessary conditions of optimality in the form of Unmaximized Inclusions (UI) are derived for optimal control problems with state constraints. The conditions presented here generalize earlier optimality conditions to problems that may be nonconvex. The derivation of UI-type conditions in the absence of the convexity assumption is of particular importance when deriving necessary conditions for constrained problems. We illustrate this feature by establishing, as an application, optimality conditions...

Currently displaying 21 – 39 of 39

Previous Page 2