Displaying 21 – 40 of 102

Showing per page

Approximate maximum principle for discrete approximations of optimal control systems with nonsmooth objectives and endpoint constraints

Boris S. Mordukhovich, Ilya Shvartsman (2013)

ESAIM: Control, Optimisation and Calculus of Variations

The paper studies discrete/finite-difference approximations of optimal control problems governed by continuous-time dynamical systems with endpoint constraints. Finite-difference systems, considered as parametric control problems with the decreasing step of discretization, occupy an intermediate position between continuous-time and discrete-time (with fixed steps) control processes and play a significant role in both qualitative and numerical aspects of optimal control. In this paper we derive an...

Approximation of maximal Cheeger sets by projection

Guillaume Carlier, Myriam Comte, Gabriel Peyré (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of d . This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.

Approximation of maximal Cheeger sets by projection

Guillaume Carlier, Myriam Comte, Gabriel Peyré (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

This article deals with the numerical computation of the Cheeger constant and the approximation of the maximal Cheeger set of a given subset of d . This problem is motivated by landslide modelling as well as by the continuous maximal flow problem. Using the fact that the maximal Cheeger set can be approximated by solving a rather simple projection problem, we propose a numerical strategy to compute maximal Cheeger sets and Cheeger constants.

Approximation of the Snell envelope and american options prices in dimension one

Vlad Bally, Bruno Saussereau (2002)

ESAIM: Probability and Statistics

We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.

Approximation of the Snell Envelope and American Options Prices in dimension one

Vlad Bally, Bruno Saussereau (2010)

ESAIM: Probability and Statistics

We establish some error estimates for the approximation of an optimal stopping problem along the paths of the Black–Scholes model. This approximation is based on a tree method. Moreover, we give a global approximation result for the related obstacle problem.

Chance constrained optimal beam design: Convex reformulation and probabilistic robust design

Jakub Kůdela, Pavel Popela (2018)

Kybernetika

In this paper, we are concerned with a civil engineering application of optimization, namely the optimal design of a loaded beam. The developed optimization model includes ODE-type constraints and chance constraints. We use the finite element method (FEM) for the approximation of the ODE constraints. We derive a convex reformulation that transforms the problem into a linear one and find its analytic solution. Afterwards, we impose chance constraints on the stress and the deflection of the beam....

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of Cell Based Finite Volume Discretizations for Problems of Control in the Conduction Coefficients

Anton Evgrafov, Misha Marie Gregersen, Mads Peter Sørensen (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a convergence analysis of a cell-based finite volume (FV) discretization scheme applied to a problem of control in the coefficients of a generalized Laplace equation modelling, for example, a steady state heat conduction. Such problems arise in applications dealing with geometric optimal design, in particular shape and topology optimization, and are most often solved numerically utilizing a finite element approach. Within the FV framework for control in the coefficients problems ...

Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's

Konstantinos Chrysafinos (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A discontinuous Galerkin finite element method for an optimal control problem related to semilinear parabolic PDE's is examined. The schemes under consideration are discontinuous in time but conforming in space. Convergence of discrete schemes of arbitrary order is proven. In addition, the convergence of discontinuous Galerkin approximations of the associated optimality system to the solutions of the continuous optimality system is shown. The proof is based on stability estimates at arbitrary time...

Convergence of the time-discretized monotonic schemes

Julien Salomon (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

Many numerical simulations in (bilinear) quantum control use the monotonically convergent Krotov algorithms (introduced by Tannor et al. [Time Dependent Quantum Molecular Dynamics (1992) 347–360]), Zhu and Rabitz [J. Chem. Phys. (1998) 385–391] or their unified form described in Maday and Turinici [J. Chem. Phys. (2003) 8191–8196]. In Maday et al. [Num. Math. (2006) 323–338], a time discretization which preserves the property of monotonicity has been presented. This paper introduces a proof of...

Direct solution of nonlinear constrained quadratic optimal control problems using B-spline functions

Yousef Edrisi Tabriz, Mehrdad Lakestani (2015)

Kybernetika

In this paper, a new numerical method for solving the nonlinear constrained optimal control with quadratic performance index is presented. The method is based upon B-spline functions. The properties of B-spline functions are presented. The operational matrix of derivative ( 𝐃 φ ) and integration matrix ( 𝐏 ) are introduced. These matrices are utilized to reduce the solution of nonlinear constrained quadratic optimal control to the solution of nonlinear programming one to which existing well-developed...

Discrete mechanics and optimal control: An analysis

Sina Ober-Blöbaum, Oliver Junge, Jerrold E. Marsden (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper...

Discrete mechanics and optimal control: An analysis*

Sina Ober-Blöbaum, Oliver Junge, Jerrold E. Marsden (2011)

ESAIM: Control, Optimisation and Calculus of Variations

The optimal control of a mechanical system is of crucial importance in many application areas. Typical examples are the determination of a time-minimal path in vehicle dynamics, a minimal energy trajectory in space mission design, or optimal motion sequences in robotics and biomechanics. In most cases, some sort of discretization of the original, infinite-dimensional optimization problem has to be performed in order to make the problem amenable to computations. The approach proposed in this paper...

Dual-weighted goal-oriented adaptive finite elements for optimal control of elliptic variational inequalities

M. Hintermüller, R. H. W. Hoppe, C. Löbhard (2014)

ESAIM: Control, Optimisation and Calculus of Variations

A dual-weighted residual approach for goal-oriented adaptive finite elements for a class of optimal control problems for elliptic variational inequalities is studied. The development is based on the concept of C-stationarity. The overall error representation depends on primal residuals weighted by approximate dual quantities and vice versa as well as various complementarity mismatch errors. Also, a priori bounds for C-stationary points and associated multipliers are derived. Details on the numerical...

Efficient algorithm to solve optimal boundary control problem for Burgers' equation

Alaeddin Malek, Roghayeh Ebrahim Nataj, Mohamad Javad Yazdanpanah (2012)

Kybernetika

In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method...

Currently displaying 21 – 40 of 102